
MSc STATISTICS

Imperial College London

Kernel-Based Inference Methods for
Ordinary Differential Equations

Author:
Yanni Papandreou
(CID: 00955392)

Supervisor:
Dr. Andrew Duncan

A thesis submitted for the degree of

MSc Statistics

October 13, 2019

Declaration

The work contained in this thesis is my own work unless otherwise stated.

Signature:

1

Acknowledgements

I would like to thank Dr. Andrew Duncan for his guidance and constructive feedback
during the completion of this work.

2

Abstract

The aim of this project is to consider the use of Maximum Mean Discrepancy (MMD)
as a tool for inferring the true parameter value which generates data from a particular
class of generative models based on Ordinary Differential Equations. We will have two
main goals: the first is to demonstrate how MMD can be used as an appropriate cost
function which will then be minimized via various gradient descent approaches in or-
der to infer the true parameter value. The second goal will be to consider the Adjoint
Method as a means of speeding up the estimation procedure in cases where the parameter
space is very high dimensional. Numerical experiments will be used for the illustra-
tion of both objectives. Jupyter notebooks containing the code for these experiments
can be found at the following GitHub repository: https://github.com/nepoComplex/

Kernel-based-inference-ODEs.git.

3

https://github.com/nepoComplex/Kernel-based-inference-ODEs.git
https://github.com/nepoComplex/Kernel-based-inference-ODEs.git

List of Figures

4.1 Results for a particular run starting from the vector (7.73, 0.18, 6.19, 2.12)T 44
4.2 Sampled trajectories using the truth and the results from the particular

run of both algorithms shown in Figure 4.1. The first row are plots of the
first component of the state vector against time, the second row shows the
second component against time and the third row shows phase plots. . . . 45

4.3 Results for a particular run starting from the vector (2.59, 0.57, 3.21, 7.08)T .
The dashed horizontal black lines are at the true parameter values. 47

4.4 Sampled trajectories using the truth and the results from the particular
run of the algorithm shown in Figure 4.3. The first row are plots of the
first component of the state vector against time, the second row shows the
second component against time and the third row shows phase plots. . . . 48

4.5 Estimated Squared MMD against iteration for Gaussian Mixture target . . 51
4.6 Histograms and density estimates for true data and simulated data 52
4.7 Estimated Squared MMD against iteration for noisy Make Circles target . 53
4.8 Scatter plots of the true data and the simulated data. 54

4

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Brief Overview of Common Methods for Inference in Dynamical Systems . 8
1.3 Background Theory . 9

1.3.1 Reproducing Kernel Hilbert Spaces 10
1.3.2 Maximum Mean Discrepancy . 14
1.3.3 Characteristic Kernels . 20

2 Parameter Estimation for ODEs using MMD 25
2.1 Minimum MMD estimators . 25
2.2 Computing the Jacobian ∇θGθ . 29

3 Reverse Differentiation of ODEs 32
3.1 Derivation of the Adjoint Method . 32

3.1.1 Adjoint Method for Time-dependent Problems 32
3.1.2 A Simple Worked Example . 34
3.1.3 Application of the Adjoint Method to Computing the MMD gradient 35
3.1.4 Computational Cost of the Adjoint Method 38

4 Numerical Experiments 39
4.1 Numerical Experiment 1: The Schnakenberg Model 39

4.1.1 Problem Setup . 39
4.1.2 Some Comments on the Implementation 42
4.1.3 Results . 43

4.2 Numerical Experiment 2: The Schnakenberg Model 45
4.2.1 Some Comments on the Implementation 45
4.2.2 Results . 46

4.3 Numerical Experiment 3: Neural Nets . 48
4.3.1 Problem Setup . 48
4.3.2 Some Comments on the Implementation 50
4.3.3 Numerical Experiment 3.1: Gaussian Mixture 50
4.3.4 Numerical Experiment 3.2: The Make Circles Dataset 52

5 Conclusion 55
5.1 Summary . 55
5.2 Issues Faced . 55
5.3 Potential Directions Forward . 56

5.3.1 The Curse of Dimensionality . 56
5.3.2 Adjoint Method for Natural Gradient Descent 56

5

CONTENTS

5.3.3 Other potential directions . 57

List of Notation and Abbreviations 58

A Proofs/Justifications 59

B Miscellaneous 61

6

Chapter 1

Introduction

1.1 Motivation

In this project we will be concerned with investigating the use of Maximum Mean Dis-
crepancy (MMD) as a means of performing inference of generative statistical models
based on Ordinary Differential Equations (ODEs). In many cases, such models are in-
tractable, in the sense that the likelihood will not have a closed, computable form. A
generative model is essentially a parametric family of probability measures from which
we can obtain samples for any choice of parameter. To be more specific, given a Borel
probability space (U ,F ,U), [1, p. 2] calls a generative model any probability measure Pθ
which is the pushforward G#

θ U of the probability measure U with respect to a measurable
parametric map Gθ : U → X which is called the generator 1. In order to generate n

independent realizations from the model we first sample n i.i.d. realizations {ui}ni=1

i.i.d.∼ U
and then map these realizations using the generator to obtain n independent realizations
from G#

θ U, {yi = Gθ(ui)}ni=1. It can be seen that generating samples from these models
can be relatively straightforward, while computing the likelihood is not necessarily possi-
ble, as an associated positive density may not exist or may not be computable. In these
circumstances alternatives to maximum likelihood estimation are required for inference.

In this work we will consider complex generative models which are based on ODEs.
To be more specific we consider the following initial value problems (IVPs):

dx(i)

dt
= fθ(x

(i)(t); ξ(i)), x(i)(0) = ε(i), i = 1, 2, . . . , n (1.1)

where the function on the RHS of the ODEs depends on some vector of parameters
θ ∈ Θ ⊆ Rp whose value we would like to infer and also might depend on some noise

{ξ(i)}mi=
i.i.d.∼ D1(θ) where D1(θ) is some distribution which might also depend on the

unknown parameters θ. The ε(i)’s are the initial conditions for the ODEs which can be

random, in general we have {ε(i)}mi=1
i.i.d.∼ D2(θ) where again D2(θ) is some distribution

which might depend on the unknown parameters. We shall be assuming in this project
that the noise terms ξ(i) and ε(i) are finite dimensional; in particular ξ(i) ∈ Rs and ε(i) ∈ Rd

(note: this is the same dimension as the dimension of x(i)).

Remark. If instead we have that the noise term ξ(i) is infinite dimensional (e.g. if it
is a path valued random variable, like Brownian motion) then (1.1) includes Stochastic
Differential Equations (SDEs).

1This should not be confused with the concept of an infinitesimal generator for Markov processes.

7

1.2. BRIEF OVERVIEW OF COMMON METHODS FOR INFERENCE IN
DYNAMICAL SYSTEMS

We assume that the function fθ is sufficiently differentiable w.r.t. all its arguments
and that the distributions D1(θ), D2(θ) can be sampled from given any particular choice
of parameter vector θ. Our generative model is now as follows: we take as our ui the
pair (ε(i), ξ(i)). The generator in this framework, Gθ, is formally the map which takes the
pair ui = (ε(i), ξ(i)) and ‘solves’ the IVPs (1.1) to yield potentially noisy observations of
solutions of (1.1): yi = {h(x(i)(t)) + e(i)}t∈T , where h is some function determining the
structure of the observation process, e(i) is some white-noise process, and T is some set
of times on which we desire the trajectory.2

Remark. In the case of noisy measurements of a deterministic ODE mentioned in the
preceding remark, where the {e(i)

r } are i.i.d. Nd(0, σ2I), the likelihood function for the
unknown parameter θ can be explicitly written down. This can be done as follows: first
we have, using properties of the multivariate normal distribution, that the observations
are distributed as follows:

y(i)
r = x(i)(tr;θ) + e(i)

r ∼ Nd(x(i)(tr;θ), σ2I)

Since the observations for different samples (i.e. different i) and at different times (i.e.
different r) are all independent of each other the likelihood for the unknown parameters
can be written as:

l(θ) =
∏
i

∏
r

exp
(
− 1

2σ2 (y
(i)
r − x(i)(tr;θ))T (y

(i)
r − x(i)(tr;θ))

)
(2π)d/2σd


Maximum likelihood estimation can then be used to estimate the true parameters. For
more general ODE models this is no longer possible and this leads us to consider the
methods presented in this project.

Our aim in this project is to consider the use of Maximum Mean Discrepancy as a
tool for inferring the true parameter value which generates data from the above gener-
ative model. We will have two main goals: the first is to demonstrate how MMD can
be used as an appropriate cost function which will then be minimized using gradient de-
scent approaches in order to infer the true parameter value. Our second goal will be to
consider the use of the so called Adjoint Method to speed up our estimation algorithm in
cases where our parameter space Θ is very high dimensional (i.e. for large p). Numerical
experiments will be used for illustration in both cases.

We will first provide a brief overview of various methods commonly used for param-
eter inference in ODEs/dynamical systems. The estimation of parameters in dynamical
systems is important in many fields of science and engineering because it is often the case
that physical, chemical or biological processes can be accurately represented by systems
of ODEs with unknown parameters [2, p. 698].

1.2 Brief Overview of Common Methods for Infer-

ence in Dynamical Systems

Often in the literature on parameter inference in dynamical systems the scenario of noisy
observations of a deterministic ODE at discrete times is considered. In this framework

2If the set T is countable then yi is considered a vector of observations of the trajectories of the IVPs
(1.1) on some time-grid; however T need not be countable, but this case is less computationally relevant.

8

1.3. BACKGROUND THEORY

the problem essentially becomes a question of regression; the goal is to use these noisy
observations to infer the true parameter values. The most commonly used method is
based on finding the choice of parameter vector which minimizes the least-squares cost
function between the observations and the predictions of the model (see for instance [3] or
[4]). This minimization often is performed using a gradient descent style approach similar
to the methods we will be considering in this project.

A popular alternative approach, proposed by Varah (see [5]), instead first performs a
non-parametric estimation of the trajectory (often via a spline approach). This estimated
functional form of the trajectory is then used to compute estimated derivative values.
Minimization of the least-squares cost between these estimated derivative values together
with the derivative values computed using the observed data and RHS of the ODEs is
then undertaken in an attempt to infer the true parameters. Building on this work Poyton
et al. [2, p. 706] considered an iterative algorithm which essentially iterates between car-
rying out the above two steps and then using a model-based roughness penalty to improve
the fitted splines. In [6] a similar approach involving a pseudo-least squares estimator is
considered.

Other methods have been investigated in the literature. We briefly cite these now. In
[7] and [8] Markov Chain Maximum Likelihood methods and Expectation Maximization
approaches are discussed for the parameter estimation problem (note: [8] deals with SDE
models). In [9] a cross-entropy approach is investigated. A multi-shooting method is dis-
cussed in [10]. Bayesian approaches to the parameter estimation of dynamical systems
have also been considered. For instance [11] considers the use of Gaussian Process (GP)
regression to perform Bayesian inference of parameters in nonlinear ordinary and delay
differential equations. Gaussian Processes have also been used in [12] where the authors
propose to learn a non-parametric ODE model using GP vector fields.

In this project we will instead be considering systems where we only have noisy initial
conditions and our observations are noiseless (i.e. we consider dropping ξ(i), e(i) and keep-
ing the ε(i) in (1.1)). We are thus in a situation where essentially a probability distribution
is fed into a differential equation, is transformed, and a potentially different distribution
is obtained as the output. Instead of using the least-squares discrepancy between the
observed data and the predicted data from the model we will instead be using Maxi-
mum Mean Discrepancy, a metric on the space of probability measures, as a discrepancy
between the observed empirical output distribution and the generated empirical output
distribution. Before explaining our approach to the parameter estimation problem we will
first go over relevant background theory.

1.3 Background Theory

In this section we provide a brief overview of the relevant theory which we will be using.
We will proceed by first going over the definition of a reproducing kernel Hilbert space
(RKHS) and then listing the relevant major results. We will then provide a brief overview
of the kernel mean embedding of probability distributions into an RKHS before finally
moving on to a discussion of Maximum Mean Discrepancy.

9

1.3. BACKGROUND THEORY

1.3.1 Reproducing Kernel Hilbert Spaces

We now describe one possible definition of a reproducing kernel Hilbert space. We will
follow the exposition given in [13]. The reader is invited to consult this reference for
further details on RKHS’s. A RKHS is a Hilbert space, H, of functions from some
non-empty set X to the reals3, i.e. H ⊆ RX which has some additional properties which
means that it is relatively well-behaved; in particular if two functions f, g ∈ H are close
with respect to the norm of H then f(x) and g(x) are close in R, for all x ∈ X , with
respect to the standard norm in R. We will denote the inner product in H by 〈·, ·〉H and
the corresponding norm as ‖ · ‖H. In order to properly define a RKHS we must first
define what an evaluation functional is. Following the definition in [13, p.7] we can define
an evaluation functional as follows:

Definition 1.3.1. (Evaluation functional) Let H be a Hilbert space of real-valued func-
tions, defined on a non-empty set X . For a fixed x ∈ X , the map δx : H → R which maps
f 7→ f(x) is called the (Dirac) evaluation functional at x.

Having defined what an evaluation functional is we are now in the position to define
a RKHS. We follow the definition in [13, p.7]:

Definition 1.3.2. (Reproducing kernel Hilbert space) A Hilbert space H of real-valued
function, defined on a non-empty set X is said to be a Reproducing Kernel Hilbert Space
(RKHS) if δx is continuous for all x ∈ X .

This definition has many useful consequences. Before moving on to discuss these,
we first present an equivalent characterisation of continuity for linear operators between
normed linear spaces given in [13, p.6] which will be useful to us:

Theorem 1.3.1. Let (F , ‖ · ‖F) and (G, ‖ · ‖G) be normed linear spaces. If L : F → G is
a linear operator, then the following three conditions are equivalent:

1. L is a bounded operator 4.

2. L is continuous on F .

3. L is continuous at one point of F .

Since δx is clearly a linear operator from H → R we can easily see that definition 1.3.2
is equivalent to the requirement that δx is a bounded operator for all x ∈ X .

From the definition 1.3.2 of a RKHS together with Theorem 1.3.1 we get the following
very simple corollary ([13, see p.7]):

Corollary 1.3.2.1. (Norm convergence in H implies pointwise convergence). If a se-
quence of functions (fn)n∈N in H converges in RKHS norm to another function f ∈
H then the sequence converges pointwise to f , i.e. if limn→∞ ‖fn − f‖H = 0 then
limn→∞ fn(x) = f(x) for all x ∈ X .

3The theory can be extended to complex valued functions but we will be working only with real-valued
functions here.

4A linear operator is said to be bounded if it has a finite operator norm, i.e. ‖L‖ := supf∈F
‖Lf‖G
‖f‖F

<∞.

10

1.3. BACKGROUND THEORY

Proof. We bound |fn(x)− f(x)| as follows:

|fn(x)− f(x)| = |δx(fn)− δx(f)|
= |δx(fn − f)|
≤ ‖δx‖‖fn − f‖H

Now ‖δx‖ <∞ as H is an RKHS and so δx is continuous and hence a bounded operator
by Theorem 1.3.1. The result then follows using the assumption that ‖fn − f‖H → 0 as
n→∞. �

So far we have managed to define what a RKHS is without mentioning anything
about kernels. We will now aim to explain the role of kernels for a RKHS. We begin by
giving the definition of a reproducing kernel which we take from [13, p.8]:

Definition 1.3.3. (Reproducing kernel) Let H be a Hilbert space of real-valued functions
defined on a non-empty set X . A function k : X × X → R is called a reproducing kernel
of H if it satisfies:

• ∀x ∈ X , k(·, x) ∈ H

• ∀x ∈ X ,∀f ∈ H, 〈f, k(·, x)〉H = f(x) (the reproducing property).

In particular5, we have, for any x, y ∈ X ,

k(x, y) = 〈k(·, x), k(·, y)〉H (1.2)

We will now show that any RKHS H has a unique reproducing kernel k ([13, see
p.8-9]). We first state the Riesz Representation Theorem which we will need for our proof
([13, see p.6]):

Theorem 1.3.2. (Riesz representation) In a Hilbert space F , all continuous linear func-
tionals are of the form 〈·, g〉F , for some g ∈ F .

We can now prove the following (we follow the proof from [13, p.9]):

Proposition 1.3.1. (Existence and Uniqueness of reproducing kernel) Any RKHS H
has a unique reproducing kernel k. I.e. a Hilbert space of functions H ⊆ RX (X 6= ∅) is
a reproducing kernel Hilbert space if and only if it has a reproducing kernel. Further if a
reproducing kernel exists it is unique.

Proof. (Existence) Suppose H is a reproducing kernel Hilbert space. We show it has a re-
producing kernel. For any x ∈ X we have from definition 1.3.2 that the Dirac evaluational
functional at x, δx, is continuous and so by the Riesz representation theorem (Theorem
1.3.2) we have that there exists fδx ∈ H such that

δx(f) = 〈f, fδx〉H ∀f ∈ H.

We can now define k(y, x) := fδx(y) for all x, y ∈ X . Clearly k is a reproducing kernel as
we have k(·, x) ∈ H and 〈f, k(·, x)〉H = 〈f, fδx〉H = δx(f) = f(x) for all x ∈ X .

5Note that the symmetry of the inner product, together with (1.2), ensures that k is symmetric.

11

1.3. BACKGROUND THEORY

Now for the converse, suppose H ⊆ RX is a Hilbert space with a reproducing kernel
k. We show that H is a RKHS. To do so we show that δx is a bounded operator for all
x ∈ X . Take any x ∈ X and any f ∈ H and bound δx(f) as follows:

|δx(f)| = |f(x)|
= |〈f, k(·, x)〉H|
≤ ‖f‖H‖k(·, x)‖H
= (〈k(·, x), k(·, x)〉H)1/2 ‖f‖H
= k(x, x)1/2‖f‖H

Where we used the Cauchy-Schwarz inequality and the reproducing property (1.2) to sim-
plify the upper bound. Now using the fact that k(x, x) <∞ we conclude that ‖δx‖ <∞
and so δx is a bounded operator and hence is continuous as required.

(Uniqueness) Now suppose H has two reproducing kernels k1, k2. We have for any f ∈ H
and for any x ∈ X the following:

〈f, k1(·, x)− k2(·, x)〉H = 〈f, k1(·, x)〉H − 〈f, k2(·, x)〉H = f(x)− f(x) = 0

In particular, if we choose to take f = k1(·, x)−k2(·, x) we obtain ‖k1(·, x)−k2(·, x)‖2
H = 0

and so k1(·, x) ≡ k2(·, x). From this it follows that k1 = k2 as required. �

From the proof of Proposition 1.3.1 we can see that the kernel k plays the role of the
representor of evaluation in H.

We will now conclude this subsection by briefly discussing the Moore-Aronszajn The-
orem, which essentially states that for every positive definite function k(x, y) there exists
a unique RKHS H which has reproducing kernel k. In order to do so we must first define
what a positive definite function is. We follow the definition from [13, p.9]:

Definition 1.3.4. (Positive definite functions) A symmetric function h : X × X → R is
positive definite if ∀n ≥ 1, ∀(a1, . . . , an) ∈ Rn,∀(x1, . . . , xn) ∈ X n we have,

n∑
i=1

n∑
j=1

aiajh(xi, xj) ≥ 0 (1.3)

The function h(·, ·) is said to be strictly positive definite if for mutually distinct {xi},
equality in (1.3) holds only when all the ai are 0.6

Any reproducing kernel is a positive definite function which is a simple corollary of
the following lemma taken from [13, see p.10]:

Lemma 1.3.3. Let F be any Hilbert space, X a non-empty set and φ : X → F . then
the function h(x, y) := 〈φ(x), φ(y)〉F is positive definite.

For a proof of the above lemma see [13, p. 10]. From this lemma it follows that any
reproducing kernel is positive definite:

6We follow the terminology frequently used in the machine learning literature as opposed to the more
common terminology in linear algebra of “positive semi-definite” vs. “positive definite”.

12

1.3. BACKGROUND THEORY

Corollary 1.3.3.1. Reproducing kernels are positive definite.

Proof. For a reproducing kernel k in an RKHS H the reproducing property (1.2) gives
us that,

k(x, y) = 〈k(·, x), k(·, y)〉H
and so taking φ : X → H to be the map φ(x) = k(·, x) we see that Lemma 1.3.3 gives us
that k is positive definite. �

Before finally stating and discussing the Moore-Aronszajn Theorem we make a brief
remark:

Remark. There is a distinction made between a kernel and a reproducing kernel in the
literature which can be useful. A kernel is defined as follows [13, see p.11]:

Definition 1.3.5. (Kernel) Let X be a non-empty set. The function k : X × X → R is
said to be a kernel if there exists a real Hilbert space H and a map φ : X → H such that
∀x, y ∈ H we have,

k(x, y) = 〈φ(x), φ(y)〉H

This map φ is often referred to as the feature map and the space H as the feature space.7

This will become a very important concept when we discuss MMD later on.

We thus see that a kernel is a function which can be written as an inner product in feature
space and so is positive definite via Lemma 1.3.3. We can also easily see that any reproduc-
ing kernel k in an RKHS H is also a kernel as we can write k(x, y) = 〈k(·, x), k(·, y)〉H =
〈φ(x), φ(y)〉H where the feature map is defined by φ(x) := k(·, x).

We now finally present the Moore-Aronszajn Theorem [13, see p.16]:

Theorem 1.3.4. (Moore-Aronszajn) Let k : X ×X → R be a positive definite function.
There exists a unique RKHS H ⊆ RX with reproducing kernel k. Moreover, if the space
H0 := span[{k(·, x)}x∈X] is endowed with the inner product

〈f, g〉H0 =
n∑
i=1

m∑
j=1

αiβjk(xi, yj), (1.4)

where f =
∑n

i=1 αik(·, xi) and g =
∑m

j=1 βjk(·, yj), then H0 is a valid pre-RKHS. 8

We do not go over the proof of Theorem 1.3.4. A comprehensive proof is given in
[13, see p.12-18]. We now note the significance of this theorem. We saw earlier that any
RKHS H necessarily has a unique reproducing kernel k which is also a positive definite
function and is also a kernel. We also have seen that any kernel is a positive definite
function. The Moore-Aronszajn theorem tells us that for any positive definite function
k there is a unique RKHS H with reproducing kernel k. This means that any positive
definite function is necessarily a reproducing kernel. Thus, the three concepts of kernels,
reproducing kernels and positive definite functions are equivalent. This result is very
powerful and will be useful when we discuss MMD in the next section.

7A given kernel can have more than one feature map.
8The notion of a pre-RKHS is discussed in greater depth in [13]. It is essentially a space which is

used to give us the unique RKHS mentioned in Theorem 1.3.4.

13

1.3. BACKGROUND THEORY

1.3.2 Maximum Mean Discrepancy

We will now motivate the Maximum Mean Discrepancy (MMD) which will be the vital
ingredient to all our subsequent algorithms. MMD is a particular instance of an Inte-
gral Probability Metric (IPM). An Integral Probability Metric γF is a pseudometric9 on
probability distributions. To be more specific, if we let P denote the set of all Borel
probability measures on a topological space (X ,A), then the IPM between P,Q ∈P is
defined to be [14, see p. 1518]:

γF(P,Q) := sup
f∈F

∣∣∣∣∫
X
fdP−

∫
X
fdQ

∣∣∣∣ (1.5)

where F is a class of real-valued, bounded and measurable functions on X .

The choice of F is important and leads to different IPMs. Intuitively, the “larger”
and richer F is the more discerning γF is; if one chooses F to be sufficiently “large” then
γF will in fact be a metric on P. However, the richer (and “larger”) F is, the harder it
will be to calculate/estimate γF . We list below some well-known examples of choices of
F which lead to the IPM being an actual metric:

• Choosing F = {f : ‖f‖∞ ≤ 1} =: FTV , where ‖f‖∞ = supx∈M |f(x)|, yields the
total variation distance, γFTV

=: TV

• Choosing F = {1(−∞,t] : t ∈ Rd} =: FKS yields the familiar Kolmogorov distance,
γFKS

• Choosing F = {ei〈ω,·〉 : ω ∈ Rd} =: Fc, where i is the imaginary unit, yields
γFc(P,Q) to be the maximal absolute difference between the characteristic functions
of P and Q. The uniqueness theorem for characteristic functions yields that γFc is
a metric on P.

For further examples one can consult [14, p. 1519].

Having defined what an IPM is we are now in a position to define Maximum Mean
Discrepancy. MMD is obtained by choosing F in the definition of an IPM to be the
unit ball in an RKHS Hk with reproducing kernel k. In particular we will denote the
Maximum Mean Discrepancy associated with the RKHS Hk by γk, which is defined as:

γk(P,Q) := sup
f∈Fk

∣∣∣∣∫
X
fdP−

∫
X
fdQ

∣∣∣∣ (1.6)

where Fk is the unit ball in the RKHS Hk, i.e. Fk := {f ∈ Hk : ‖f‖Hk
≤ 1}. The choice

of kernel k is also important and affects whether or not γk will be a metric. This will be
discussed at greater depth later. We now list some advantages that MMD has over other
choices of F in an IPM (these advantages come from [14, p. 1519-1520]):

• In most applications the probability measures P and Q are unknown and all we
have access to are random, i.i.d. (independent and identically distributed) samples

9A pseudometric on a set X is a function d : X × X → R which satisfies: d(x, x) = 0 ∀x ∈ X,
d(x, y) = d(y, x) ∀x, y ∈ X and d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X. Thus, a pseudometric is almost
a metric on X. If we have in addition that d(x, y) = 0 =⇒ x = y then d is a metric on X.

14

1.3. BACKGROUND THEORY

from each measure, i.e. {xi}ni=1 ∼ P, {yj}mj= ∼ Q. These samples can be used
to estimate γF ; one such approach is to compute γF(P,Q) by approximating P,Q
with the corresponding empirical measures Pn = 1

n

∑n
i=1 δxi ,Qm = 1

n

∑m
j=1 δyj

10. By

choosing F to be Fk it can be shown that this estimator, γk(Pn,Qm), is a
√

nm
n+m

-consistent11 estimator of γk(P,Q), for all P,Q when k is measurable and bounded.
It is also known that if k is translation invariant on X = Rd then the rate is
independent of the dimension d, which is very important when one works with high
dimensions. Other choices of F might not yield consistent estimators when using
this procedure (e.g. FTV or Fc) or if they do the rate of convergence might be
dependent on the dimension d (for a more detailed discussion see [14, p. 1519]).

• γk is in principle relatively easier to calculate than other IPMs; as we shall see later,
under certain conditions, γ2

k(P,Q) is simply a sum of expectations of the kernel k.

• Since γk can, under certain conditions, be calculated entirely in terms of the kernel
k it can be used in applications where the domain is arbitrary such as sets of graphs,
or strings, whereas other choices of F can only deal with X = Rd.

We will now try to motivate MMD in a more natural way, in order to get a more
intuitive grasp on it. In order to do this we must first discuss Hilbert Space embeddings
of probability distributions. This is a generalization of the kernel feature map φ : X → H
seen in section 1.3.1 which maps a point in X into the RKHS H to kernel feature maps
which map probability measures on X into the RKHS. We follow the presentation in [15,
p. 26-31].

To motivate this concept we will first consider the example of a Dirac measure δx
where x is some fixed point in X , i.e.

δx(A) =

{
1 if x ∈ A
0 if x /∈ A (1.7)

For any measurable f on X we have,∫
X
f(t)dδx(t) = f(x) (1.8)

This can be re-written using the reproducing property as,∫
X
f(t)dδx(t) =

∫
X
〈f, k(·, t)〉Hdδx(t)

=

〈
f,

∫
X
k(·, t)dδx(t)

〉
H

= 〈f, k(·, x)〉H

We can see from this that the integral
∫
X k(·, t)dδx(t) acts as a representer of the measure

δx in the RKHS H just as k(·, x) is the representer of x in the RKHS. We can actually

10δx is here taken to be a (Dirac) point mass at x. We note that we use the same notation as for the
Dirac Evaluation Functional; the particular meaning should hopefully be clear from the context.

11An estimator is said to be N -consistent if the sampling error is Op(1/N).

15

1.3. BACKGROUND THEORY

view this integral as a representer of evaluation of the following functional which takes
the expectation w.r.t (with respect to) δx:

f 7−→
∫
X
f(t)dδx(t) (1.9)

This example is trivial as (1.9) is equivalent to taking the inner product 〈f, k(·, x)〉H
as both simply give f(x). (1.9) however provides us with a measure-theoretic viewpoint
of representing a point in a RKHS. We can now make sense of the following feature map
of a Dirac measure,

δx 7−→
∫
X
k(·, t)dδx(t) (1.10)

This concept can be extended to include measures which are a linear combination of
Dirac measures via the feature map,

n∑
i=1

aiδxi 7−→
∫
X
k(·, t)d

(
n∑
i=1

aiδxi(t)

)
=

n∑
i=1

ai

∫
X
k(·, t)dδxi(t) (1.11)

where the ai are constants and the xi are fixed points in X (see [15] p.28-29 for a discus-
sion of this).

We can now take all of this once step further and consider an arbitrary measure P on
X and define a feature map,

P 7−→
∫
X
k(·, t)dP(t) =: Π[P] (1.12)

where the integral in (1.12) is interpreted as a Bochner integral12. The feature map (1.12)
is what we will refer to as the Hilbert Space Embedding of the probability measure P into
the RKHS H with reproducing kernel k. This embedding is the analogue of a kernel
feature map of points to probability measures.

We now present a lemma found in [15, see p.30] which gives a sufficient condition for
the embedding defined in (1.12) to actually exist and belong to H:

Lemma 1.3.5. If EX∼P

[√
k(X,X)

]
<∞ then Π[P] ∈ H and EX∼P[f(X)] = 〈f,Π[P]〉H.

Proof. Let TP : H → R be the linear functional defined by TP[f] := EX∼P[f(X)]. We
show that TP is a bounded operator. For any f ∈ H we have:

|TP[f]| = |EX∼P[f(X)]|
≤ EX∼P |f(X)|
= EX∼P |〈f, k(·, X)〉H|
≤ EX∼P [‖k(·, X)‖H‖f‖H]

= ‖f‖HEX∼P[
√
k(X,X)]

where the first inequality above is Jensen’s inequality and the second inequality follows
from the Cauchy-Schwarz inequality together with the preservation of ordering property

12A Bochner integral is in general an integral of a function which takes values in some Banach space.

16

1.3. BACKGROUND THEORY

of expectation. We also used the reproducing property twice, first to write f(X) as

〈f, k(·, X)〉H and secondly to write ‖k(·, X)‖H = 〈k(·, X), k(·, X)〉1/2H =
√
k(X,X). Now,

by the assumption we have EX∼P

[√
k(X,X)

]
< ∞ and so we have showed that TP is

a bounded operator and so by Theorem 1.3.1 we have that TP is a continuous linear
functional. We can thus invoke the Riesz representation theorem to assert that there
exists h ∈ H such that TP[f] = 〈f, h〉H for all f ∈ H. If we now take f = k(·, x) for some
x ∈ X we obtain the following,

h(x) = 〈k(·, x), h〉H = TP[k(·, x)] =

∫
X
k(t, x)dP(t)

and so h =
∫
X k(·, t)dP(t) = Π[P] as required. �

Remark. When the conditions of the above Lemma are satisfied we have that EX∼P[f(X)] =
〈f,Π[P]〉H for any f ∈ H. This can be viewed as an analogue of the reproducing property
of the evaluation operator in the RKHS for the expectation operator.

Having introduced Hilbert Space Embeddings of probability measures we can now
given an alternative characterisation of MMD for a particular set of probability measures;
we will show that for this set γk(P,Q) is in fact the RKHS norm of the difference of the
Hilbert Space Embeddings of P and Q. We present the result in the following theorem
(which can be found in [14, see p.1525]):

Theorem 1.3.6. Let Pk := {P ∈ P : EX∼P[
√
k(X,X)] < ∞}, where k is measurable

on X . Then for any P,Q ∈Pk we have,

γk(P,Q) =

∥∥∥∥∫
X
k(·, x)dP(x)−

∫
X
k(·, x)dQ(x)

∥∥∥∥
Hk

= ‖Π[P]− Π[Q]‖Hk
(1.13)

Proof. Noting that the conditions placed on probability measures in Pk are the same
conditions from Lemma 1.3.5 we can conclude that for any P ∈ Pk we have that
EX∼P[f(X)] = 〈f,Π[P]〉H for any f ∈ Hk. From the definition (1.6) of MMD we can
then write:

γk(P,Q) = sup
f∈Fk

∣∣∣∣∫
X
fdP−

∫
X
fdQ

∣∣∣∣
= sup
‖f‖Hk

≤1

|EX∼P[f(X)]− EX∼Q[f(X)]|

= sup
‖f‖Hk

≤1

|〈f,Π[P]〉Hk
− 〈f,Π[Q]〉Hk

|

= sup
‖f‖Hk

≤1

|〈f,Π[P]− Π[Q]〉Hk
|

In order to proceed we must now deal with the supremum in the final equality above. For
convenience we will denote the RKHS element Π[P]−Π[Q] by g. We now can see that in
order to simplify our expression for MMD we must figure out the following maximization
problem:

sup
‖f‖Hk

≤1

|〈f, g〉Hk
|

We do so by noting the following:

|〈f, g〉Hk
| ≤ ‖f‖Hk

‖g‖Hk
≤ ‖g‖Hk

17

1.3. BACKGROUND THEORY

where the first inequality is the Cauchy-Schwarz inequality and the second inequality
follows from the constraint of the maximization problem above. Now the above holds
for any f ∈ Fk and we can achieve equality in the above bounds iff f is chosen to be
proportional to g (this is the condition for equality in Cauchy-Schwarz) and ‖f‖Hk

= 1
(for equality in second inequality). In order to satisfy these two conditions we must take
f = g/‖g‖Hk

and thus we can finally simplify our expression for MMD as:

γk(P,Q) = sup
‖f‖Hk

≤1

|〈f, g〉Hk
|

= |〈g/‖g‖Hk
, g〉Hk

|
= ‖g‖Hk

= ‖Π[P]− Π[Q]‖Hk

as required. �

Remark. The result (1.13) in Theorem 1.3.6 holds only for measures P,Q ∈Pk. In most
applications however, we do not know the measures P,Q, as mentioned earlier, and so it
will not be possible to check whether the measures lie in Pk. In view of this, it would
be ideal if we had a kernel k such that EX∼P[

√
k(X,X)] <∞ for all P ∈P. We present

in the following proposition (taken from [14, see p. 1526]) a result which will give us a
condition on the kernel which is equivalent to this requirement.

Proposition 1.3.2. Let f be a measurable function on X . Then EX∼P[f(X)] < ∞ for
all P ∈P iff f is bounded.

Proof. See Appendix A for proof. �

We can see from the above proposition that if we take a kernel k which is bounded
then we satisfy the requirement EX∼P[

√
k(X,X)] <∞ for all P ∈P. So if k is bounded

we thus have that γk(P,Q) = ‖Π[P] − Π[Q]‖Hk
for all P,Q ∈ P. We can thus see that

the question of whether or not γk is a metric on P becomes equivalent to the question
of whether or not the embedding Π is injective, when k is bounded. This topic will be
discussed shortly. We first briefly present a number of equivalent representations of γk
which will help improve our grasp on MMD and help with its computation.

The first new representation is a simple use of the reproducing property of k (which
we assume is bounded). We can write:

18

1.3. BACKGROUND THEORY

γ2
k(P,Q) = ‖Π[P]− Π[Q]‖2

Hk

= 〈Π[P]− Π[Q],Π[P]− Π[Q]〉Hk

= 〈Π[P],Π[P]〉Hk
+ 〈Π[Q],Π[Q]〉Hk

− 2 〈Π[P],Π[Q]〉Hk

=

〈∫
X
k(·, x)dP(x),

∫
X
k(·, y)dP(y)

〉
Hk

+

〈∫
X
k(·, x)dQ(x),

∫
X
k(·, y)dQ(y)

〉
Hk

− 2

〈∫
X
k(·, x)dP(x),

∫
X
k(·, y)dQ(y)

〉
Hk

=

∫
X

∫
X
〈k(·, x), k(·, y)〉Hk

dP(x)P(y) +

∫
X

∫
X
〈k(·, x), k(·, y)〉Hk

dQ(x)Q(y)

− 2

∫
X

∫
X
〈k(·, x), k(·, y)〉Hk

dP(x)Q(y)

=

∫
X

∫
X
k(x, y)dP(x)dP(y) +

∫
X

∫
X
k(x, y)dQ(x)dQ(y)

− 2

∫
X

∫
X
k(x, y)dP(x)dQ(y)

= EX∼P,Y∼P[k(X, Y)] + EX∼Q,Y∼Q[k(X, Y)]− 2EX∼P,Y∼Q[k(X, Y)] (1.14)

We thus can see from the last equalThusity above that in the case of bounded k, the
squared MMD between two probability measures P,Q is simply a linear combination of
expectations of the kernel k, as mentioned previously. The representation (1.14) will be
used later to provide an unbiased estimator of squared MMD in our applications where
we will be unable to explicitly compute the expectations.

The second equivalent representation of MMD we will present applies when the kernel
k is a translation invariant, bounded, continuous positive definite function. In order to
derive this representation we require the well-known Bochner Theorem which we quote
from [14, see p. 1527]:

Theorem 1.3.7. (Bochner) A continuous function ψ : Rd → R is positive definite iff it
is the Fourier transform of a finite non-negative Borel measure Λ on Rd, i.e.,

ψ(x) =

∫
Rd

e−ix
TωdΛ(ω), x ∈ Rd (1.15)

Having stated this theorem we are now in a position to present and prove the following
corollary (which we follow from [14, see p. 1527]):

Corollary 1.3.7.1. Let X = Rd and k(x, y) = ψ(x− y), where ψ : X → R is a bounded,
continuous positive definite function. Then for any P,Q ∈P we have,

γk(P,Q) =

√∫
Rd

|φP(ω)− φQ(ω)|2 dΛ(ω) =: ‖φP − φQ‖L2(Rd,Λ) , (1.16)

where φP, φQ represent the characteristic functions of P and Q respectively.

19

1.3. BACKGROUND THEORY

Proof. Since the kernel k(x, y) = ψ(x−y) is bounded we can use the representation (1.14).
We write this succinctly13 as,

γ2
k(P,Q) =

∫
Rd

∫
Rd

ψ(x− y)d(P−Q)(x)d(P−Q)(y)

(a)
=

∫
Rd

∫
Rd

∫
Rd

e−i(x−y)TωdΛ(ω)d(P−Q)(x)d(P−Q)(y)

(b)
=

∫
Rd

∫
Rd

e−ix
Tωd(P−Q)(x)

∫
Rd

eiy
Tωd(P−Q)(y)dΛ(ω)

(c)
=

∫
Rd

(φP(ω)− φQ(ω))(φP(ω)− φQ(ω))dΛ(ω)

=

∫
Rd

|φP(ω)− φQ(ω)|2 dΛ(ω),

as required, where in (a) we used Bochner’s Theorem and in (b) we used Fubini’s theorem
to interchange the order of the integrals. In (c) we used the definition of the characteristic
function of a probability measure.

�

We note that there are more interpretations of MMD under different conditions. We
direct the interested reader to [14, see p.1527-1530] for a discussion of these interpretations.
We now move on to the next subsection to discuss how the choice of kernel determines
whether MMD is a metric on probability distributions.

1.3.3 Characteristic Kernels

We will now discuss the question of whether or not MMD is a metric on P (or on some
proper subset of P). The answer to this question depends on the choice of kernel k, and
we define those kernels for which the resulting MMD is a metric as being characteristic.
We present the formal definition (which we take from [14, see p.1530]) below:

Definition 1.3.6. (Characteristic Kernel) A bounded measurable positive definite kernel
k is said to be characteristic to a set D ⊆ P of probability measures defined on (X ,A)
if for P,Q ∈ D , γk(P,Q) = 0 ⇐⇒ P = Q. k is simply said to be characteristic if it
is characteristic to P. The RKHS Hk induced by such a k is called a characteristic
RKHS.

Remark. As discussed previously, in the case that k is bounded, the question of whether
or not γk is a metric on P is equivalent to the question of whether or not the embedding
Π is injective. In light of the above definition we see that it is precisely for characteristic
kernels that this embedding is injective. The name “characteristic” comes from the fact
that the embedding of a measure P into a characteristic RKHS can be viewed as a
generalization of the characteristic function associated with P, φP =

∫
Rd e

i〈·,x〉dP(x). The
uniqueness theorem for characteristic functions ensures us that φP = φQ =⇒ P = Q,
which is the same as saying that the mapping P 7−→

∫
Rd e

i〈·,x〉dP(x) is injective. We can

thus see that it is possible to view ei〈y,x〉 as a characteristic kernel; however this is not
technically true as this function is not positive definite, as required by definition 1.3.6.

13The notation d(P − Q)(x)d(P − Q)(y) in the integral is shorthand for the linear combination of
integrals in the first representation of MMD mentioned on the previous page.

20

1.3. BACKGROUND THEORY

We will now briefly present some results taken from the literature, without proof,
which characterize whether or not a given kernel k is characteristic. In order to present
the first characterization we must first define what an integrally strictly p.d. (positive
definite) kernel is. We follow the definition from [14, see p.1523]:

Definition 1.3.7. (Integrally strictly positive definite kernels) Let X be a topological
space. A measurable and bounded kernel k is said to be integrally strictly positive definite
if, ∫

X

∫
X
k(x, y)dµ(x)dµ(y) > 0

for all finite non-zero signed Borel measures µ defined on X .

Remark. It is worth noting that the definition given above is not the same as the defi-
nition of strictly pd kernels. We have that if k is integrally strictly pd then it is strictly
pd. The other direction is not true.

Having defined what an integrally strictly positive definite kernel is, we are now in
the position to present the first characterization of whether or not a given kernel k is
characteristic. We present this in the following Theorem (taken from [14, see p.1532]):

Theorem 1.3.8. (Integrally strictly pd kernels are characteristic) Let k be an integrally
strictly positive definite kernel on a topological space X . Then k is characteristic to P.

Remark. For a proof of the above theorem please consult [14, p. 1532].

The above characterization is relatively easy to understand especially compared to
the following two characterizations found in the literature (these characterizations are
referred to on p.1520 of [14]):

1. In the case of compact X , k is characteristic if it is universal (as defined by Steinwart
in [16, see p.72]), which essentially means that the RKHS Hk induced by k is dense
in the Banach space of bounded continuous function (w.r.t the supremum norm).

2. The characterization above was extended to non-compact X in [17, see p.4] and [18,
see p.1881] where it is shown that k is characteristic iff the direct sum of the induced
RKHS Hk and R is dense in the Banach space of r-integrable functions (for some
r ≥ 1).

The above two characterizations are not as easy to understand as the one presented
in Theorem 1.3.8 and it is quite difficult to verify the conditions of denseness required in
both of the above. While the integrally strictly pd characterization is easier to under-
stand, it can still be very difficult to verify if a given kernel satisfies it. This leads us to
present the next characterization which can be found in [14, see p.1533] which is much
simpler (in principle) to verify. We now assume we have X = Rd and that the kernel k
satisfies the following assumption:

Assumption 1 k(x, y) = ψ(x− y) where ψ is a bounded continuous real-valued positive
definite function on X = Rd.

We now present in the following theorem14 (adopted from [14, see p.1533]) a complete
characterization for all translation invariant kernels on Rd:

14supp here denotes the support of a Borel measure: supp(µ) := X\
⋃
{U ⊆ X : U is open, µ(U) = 0}.

21

1.3. BACKGROUND THEORY

Theorem 1.3.9. Suppose k satisfies Assumption 1. Then k is characteristic iff supp(Λ) =
Rd, where Λ is defined as in (1.15).

Remark. For a proof of the above theorem please consult the proof of Theorem 9 in [14].

We note that the above theorem essentially states that a translation invariant kernel
on Rd is characteristic iff the support of its Fourier Transform is the whole of Rd which is,
in principle, a relatively easy condition to check, provided the Fourier transform can be
computed by some means. A corollary to Theorem 1.3.9 is presented in [14, see p.1535]
which sates that any compactly supported translation invariant continuous bounded kernel
on Rd is characteristic:

Corollary 1.3.9.1. Suppose k 6= 0 satisfies Assumption 1 and supp(ψ) is compact. Then
k is characteristic.

A further corollary to Theorem 1.3.9 is given in [14, see p.1535] which allows us to
construct new characteristic kernels from a given characteristic kernel. We state this
corollary here:

Corollary 1.3.9.2. Let k, k1 and k2 satisfy Assumption 1. Suppose k is characteristic
and k2 6= 0. Then k + k1 and k · k2 are characteristic.

Remark. Note that in the above corollary we do note require k1 or k2 to be characteristic;
we can therefore obtain all sorts of characteristic kernels provided we start with one which
is characteristic.

We now present several examples of kernels.

Example 1 (Trivial kernel) Let k(x, y) = C ∀x, y ∈ Rd, where C > 0 is a constant.
Using this in the representation (1.14) we obtain,

γ2
k(P,Q) = EX∼P,Y∼P[k(X, Y)] + EX∼Q,Y∼Q[k(X, Y)]− 2EX∼P,Y∼Q[k(X, Y)]

= C + C − 2C = 0

for any P,Q ∈ P. We can thus see that this is an example of a bounded, measurable
positive definite kernel which is NOT characteristic.

Example 2 (polynomial kernel of degree 1) Let k(x, y) = xy, x, y ∈ R. We can
compute,

γ2
k(P,Q) =

∫
X

∫
X
xydP(x)dP(y) +

∫
X

∫
X
xydQ(x)dQ(y)− 2

∫
X

∫
X
xydP(x)dQ(y)

= µ2
P + µ2

Q − 2µPµQ

= (µP − µQ)2

where µP, µQ denote the means of the probability measures P,Q respectively, i.e., µP :=∫
R xdP(x). We can thus see that the polynomial kernel of degree 1 leads to the squared

MMD being simply the squared difference in the means of the two distributions under
consideration. We also note that this kernel is NOT characteristic as γk(P,Q) = 0 ⇐⇒
µP = µQ 6=⇒ P = Q for general P,Q ∈P.

22

1.3. BACKGROUND THEORY

Example 3 (polynomial kernel of degree 2) Let k(x, y) = xy + x2y2, ∀x, y ∈ R. We
have,

γ2
k(P,Q) =

∫
R

∫
R
(xy + x2y2)dP(x)dP(y) +

∫
R

∫
R
(xy + x2y2)dQ(x)dQ(y)

− 2

∫
R

∫
R
(xy + x2y2)dP(x)dQ(y)

We deal with the first integral:∫
R

∫
R
(xy + x2y2)dP(x)dP(y) =

∫
R
(yµP + y2vP)dP(y)

= µ2
P + v2

P

where vP denotes the second un-centered moment associated with P, i.e., vP :=
∫
R x

2dP(x).
The second integral can be similarly computed as,∫

R

∫
R
(xy + x2y2)dQ(x)dQ(y) = µ2

Q + v2
Q

Similarly we also can compute the final integral as,∫
R

∫
R
(xy + x2y2)dP(x)dQ(y) =

∫
R
(yµP + y2vP)dQ(y)

= µPµQ + vPvQ

Putting this all together we obtain:

γ2
k(P,Q) = µ2

P + v2
P + µ2

Q + v2
Q − 2µPµQ − 2vPvQ

= (µP − µQ)2 + (vP − vQ)2

= (µP − µQ)2 + (σ2
P − σ2

Q + µ2
P − µ2

Q)2

where σ2
P denotes the variance associated with P. We thus note that k is also NOT char-

acteristic as γ2
k(P,Q) = 0 ⇐⇒ µP = µQ and σ2

P = σ2
Q 6=⇒ P = Q for general P,Q ∈P.

Example 4 (Gaussian kernel) Let k(x, y) = e−σ‖x−y‖
2
2 , ∀x, y ∈ Rd, where ‖ ·‖2 denotes

the standard Euclidean norm in Rd, and σ > 0 is a constant which determines the
bandwidth of the Gaussian. For this example we do not explicitly compute the resulting
MMD as this cannot be computed in closed form in general. We instead note that we
can write k(x, y) = ψ(x − y) where ψ(x) = e−σ‖x‖

2
2 . The Gaussian kernel thus satisfies

Assumption 1. We proceed to compute the Fourier transform of ψ, which we denote by
ψ̂, on the next page as follows:

23

1.3. BACKGROUND THEORY

ψ̂(ω) :=
1

(2π)d/2

∫
Rd

e−iω
T xψ(x)dx

=
1

(2π)d/2

∫
Rd

e−iω
T xe−σx

T xdx

=
1

(2π)d/2

∫
Rd

e−
∑d

j=1(σxj+iωj)xjdx

=
1

(2π)d/2

∫
Rd

d∏
j=1

e−(σx2j+iωjxj)dx

=
d∏
j=1

1√
2π

∫
R
e−(σx2j+iωjxj)dxj

From the above computation we can see that the Fourier transform of ψ is in fact a
product of Fourier transforms of 1-D Gaussians, whose formula is well-known. We thus
have,

ψ̂(ω) =
d∏
j=1

1√
2σ
e−ω

2
j /4σ =

1

(2σ)d/2
e−‖ω‖

2
2/4σ, ∀ω ∈ Rd

We thus observe that the support of the Fourier transform of ψ is the whole of Rd and so
by Theorem 1.3.9 we have that k is characteristic.

Having discussed characteristic kernels and presented several characterizations for
them we will now conclude this subsection by making several remarks:

Remark. In many applications it is important that we take the associated kernel for
MMD to be characteristic so that γk is a metric on P. While choosing a characteristic
kernel does ensure that γk(P,Q) = 0 ⇐⇒ P = Q we can still nonetheless come into
problems in distinguishing two different distributions. In section 4 of [14] Sriperumbudur
et al. show that under certain conditions there can exist probability measures P 6= Q on
X such that γk(P,Q) < ε for arbitrarily small ε > 0. Essentially, under these conditions,
even though the kernel is characteristic it is unable to “properly” distinguish distributions
which differ at sufficiently high frequencies. This can cause problems in many applications,
especially when we use empirical estimates of MMD based on finite samples.

Remark. The characterization for translation invariant kernels involved the support of
the Fourier transform of ψ to be the whole of Rd. When the support is instead a proper
subset of Rd it is still possible to show, under certain conditions, that k is characteristic
to a proper subset of P. We direct the interested reader to section 3.2 of [14].

Remark. Section 3.3 of [14] investigates a similar characterization for translation in-
variant kernels on a d-dimensional torus Td. The interested reader is directed to this
reference.

24

Chapter 2

Parameter Estimation for ODEs using
MMD

In this chapter we will explain how MMD can be used to perform parameter inference in
generative models based on ODEs. We begin this chapter by outlining the general idea
behind all our estimation procedures. We follow the procedure outlined in section 2 of
[1].

2.1 Minimum MMD estimators

Throughout this section we will assume, unless otherwise stated, that we are working with
the complex generative model described in section 1.1 (see equation (1.1)). We denote
by PΘ the collection of distributions this generative model can yield samples from. We
shall assume that the true data generating distribution is unknown to us; this distribution
shall be denoted by Q. Further, we will also make the assumption that Q ∈PΘ, i.e. we
are in the M-closed setting, and we shall denote by θ0 the parameter which is associated

with Q (so that Q = Pθ0). Upon observing i.i.d. samples {yi}mi=1
i.i.d.∼ Q our goal is to use

these samples to infer the true parameter vector θ0. Throughout this project we will seek
to estimate the true parameter by using the following minimum MMD estimator ([1, see
p.5]):

θ̂m ∈ arg min
θ∈Θ

γ2
k(Pθ,Qm) (2.1)

where Qm(dy) = 1
m

∑m
i=1 δyi(dy) is the empirical measure associated with the samples

{yi}mi=1. We note that in (2.1) we have used the belongs symbol instead of an equal sign
as it might be the case that this optimization problem does not have a unique minimum.

We note that the parameter estimation procedure we are adopting essentially involves
using the squared MMD as a cost function which will then be optimized to estimate
the true parameter value. As discussed in section 1.3 if the kernel k is chosen to be
characteristic then MMD is able to discriminate between distributions. The hope is that
this should be enough to discriminate between parameters1. This optimization problem
is in general non-convex and can often not be solved analytically. As such it will be
necessary to turn to a computational approach in order to obtain an approximation of

1Of course there is the possibility that there is an identifiability problem; namely that two different
parameter vectors yield the same distribution (i.e. ∃θ1 6= θ2 such that Pθ1

= Pθ2
). In this case our

procedure might give us a different parameter vector which also generates the same distribution. This
problem does not occur when the map θ 7→ Pθ is injective.

25

2.1. MINIMUM MMD ESTIMATORS

the minimum MMD estimator (2.1). Before we proceed with outlining this approach
we must first state a few further assumption we will make. First we shall assume that
PΘ ⊆Pk. This is to ensure that for any choice of θ ∈ Θ we can use the representation
(1.14) for γ2

k(Pθ,Qm).

Remark. If we choose the kernel k to be bounded than we immediately satisfy this
assumption as in this case we have Pk = P as discussed following Proposition 1.3.2.

The second assumption we shall need is that the generator Gθ is differentiable with
respect to θ with a computable Jacobian matrix. This assumption implies that the
minimum MMD estimator will be a fixed point of the equation

θ̇ = −∇θγ2
k(Pθ,Qm) (2.2)

where ∇θ = (∂θ1 , . . . , ∂θp). In this project we will make use of gradient descent algorithms
for finding the fixed points of the equation (2.2). In this section we shall investigate a
classical stochastic gradient descent method as well as a variant of this. We note that
other optimizers exist such as the ADAM optimizer [19] (which we will utilize in our
numerical experiments in Chapter 4) as well as gradient descent with a momentum term
[20]. In order to do this we must first derive an expression for the gradient term in (2.2),
which we now proceed to do. This will be done by utilizing the representation (1.14)
for the squared MMD together with an additional assumption that the Jacobian ∇θGθ
is U-integrable (which will allow us to interchange the order of the differentiation and
expectation operations when computing the gradient). We are now in a position to derive
the gradient. We first note that under all of our assumptions the squared MMD can be
written as follows:

γ2
k (Pθ,Qm) = EX∼Pθ ,Y∼Pθ

[k(X, Y)]− 2EX∼Pθ ,Y∼Qm [k(X, Y)]

+ EX∼Qm,Y∼Qm [k(X, Y)]

=

∫
X

∫
X
k(x, y)dPθ(x)dPθ(y)− 2

∫
X

∫
X
k(x, y)dPθ(x)dQm(y)

+ EX∼Qm,Y∼Qm [k(X, Y)]

=

∫
U

∫
U
k (Gθ(u), Gθ(v))U(du)U(dv)− 2

m

m∑
j=1

∫
U
k(Gθ(u), yj)U(du)

+ EX∼Qm,Y∼Qm [k(X, Y)]

Only the first two terms in the lines above depend on θ and so only they will contribute
to the gradient. We now use the assumptions to interchange the derivative operator with
the integrals to obtain:

∇θγ2
k(Pθ,Qm) =

∫
U

∫
U
∇θk (Gθ(u), Gθ(v))U(du)U(dv)− 2

m

m∑
j=1

∫
U
∇θk (Gθ(u), yj)U(du)

We now work out the two different gradients in the integrands above separately:

∇θk(Gθ(u), Gθ(v)) = ∇θGθ(u)T∇1k(Gθ(u), Gθ(v)) +∇θGθ(v)T∇2k(Gθ(u), Gθ(v))

∇θk(Gθ, yj) = ∇θGθ(u)T∇1k(Gθ(u), yj)

26

2.1. MINIMUM MMD ESTIMATORS

where we have utilized the chain rule and where ∇1k,∇2k denote the partial derivative
w.r.t. the first and second arguments respectively. Plugging these gradients into the
integrals above yields:

∇θγ2
k (Pθ,Qm) =

∫
U

∫
U

(
∇θGθ(u)T∇1k(Gθ(u), Gθ(v)) +∇θGθ(v)T∇2k(Gθ(u), Gθ(v))

)
U(du)U(dv)

− 2

m

m∑
j=1

∫
U
∇θGθ(u)T∇1k(Gθ(u), yj)U(du)

= 2

∫
U

∫
U
∇θGθ(u)T∇1k(Gθ(u), Gθ(v))U(du)U(dv)

− 2

m

m∑
j=1

∫
U
∇θGθ(u)T∇1k(Gθ(u), yj)U(du) (2.3)

where in the last equality we essentially use the symmetry of the kernel; for a more de-
tailed justification of this see Appendix A.

In general the integrals in (2.3) are not able to be done analytically. We thus will
utilize a U-statistic2 approximation for the gradient:

Ĵθ (Qm) =
2
∑

i 6=i′ ∇θGθ (ui)
T ∇1k (Gθ (ui) , Gθ (ui′))

n(n− 1)

−
2
∑m

j=1

∑n
i=1∇θGθ (ui)

T ∇1k (Gθ (ui) , yj)

nm
(2.4)

where {ui}ni=1
i.i.d.∼ U. (2.4) is an unbiased estimator of the gradient (2.3) in the sense that

E
[
Ĵθ (Qm)

]
= ∇θγ2

k (Pθ,Qm) where here the expectation is taken w.r.t. the independent

realizations of the {ui}ni=1.

Having set-up our notation and introduced an unbiased estimator of the gradient
(2.3) we are now in a position to present the first gradient descent algorithm we will be
considering. We present this in Algorithm 1 below (see [1, p. 5]):

Algorithm 1: Classical Stochastic Gradient Descent

Input: data {yj}mj=1, initial parameter vector θ̂
(0)
∈ Θ, step-size sequence (ηr)r∈N

Output: Sequence of parameter vectors (θ̂
(r)

)r∈N
1 repeat

2 Sample {ui}ni=1
i.i.d.∼ U and compute ỹi = G

θ̂
(r−1)(ui) for i = 1, . . . , n ;

3 Compute U-statistic estimate of gradient Ĵ
θ̂
(r−1) (Qm) ;

4 Update parameter vector θ̂
(r)

= θ̂
(r−1)

− ηrĴθ̂(r−1) (Qm);

5 until convergence or max number of steps reached ;

We note that the step-size sequence (ηr)r∈N above should be chosen so as to guarantee
convergence3. If we have X ⊆ Rd then upon counting the number of multiplications in

2For a definition of U-statistics see for instance Definition 3.4 of [15, p.51-52].
3In our numerical experiments we will however also set a threshold on the maximum number of steps

we can take.

27

2.1. MINIMUM MMD ESTIMATORS

each iteration of Algorithm 1 we observe that the cost per iteration is O((n2 + nm)dp).
The cost is thus linear in the number of data points m yet quadratic in the number
of simulated points n. For large enough values of n the algorithm should approach the
minimum MMD estimator provided we start at a good location; it is very likely that
our choice of starting vector will land us in a local minimum of γ2

k (Pθ,Qm) where we
will subsequently be trapped. To try to alleviate this problem we will endeavour to
make multiple runs from different locations. For each run we will add an extra step to
our algorithm which will involve computing a U-statistic approximation4 for the squared
MMD (see [1, p.6] or [15, p.52-53]) at each iteration, namely:

MMD2(Pnθ,Qm) =

∑
i 6=i′ k (ỹi, ỹi′)

n(n− 1)
−

2
∑m

j=1

∑n
i=1 k (ỹi, yj)

mn
+

∑
j 6=j′ k (yj, yj′)

m(m− 1)
(2.5)

where Pnθ = 1
n

∑n
i=1 δỹi is the empirical distribution associated with the samples {ỹi}ni=1

computed in line 2 of Algorithm 1. Our estimate for the minimum MMD estimator will
then be the vector which achieves the lowest score (i.e. the estimate from (2.5)) across
all runs.

While the algorithm above should converge to a local minimum of the cost function it
is not in general true that the negative of the gradient −∇θγ2

k (Pθ,Qm) is in the steepest
descent direction of the cost function in MMD space; therefore it is possible that the
gradient will be making huge moves in parameter space without moving much in MMD
space and vice-versa. In such circumstances it may instead be better to modify the descent
direction using information regarding the local curvature of the MMD space. This leads
us to consider what is called “natural gradient adaptation” (see [21] and [22]), which
essentially involves modifying the parameter update step to be:

θ̂
(r)

= θ̂
(r−1)

− ηrF−1
(
θ̂

(r−1)
)
Ĵ
θ̂
(r−1) (Qm) (2.6)

where here F is the Riemannian metric on Θ which essentially contains information
regarding the local curvature of the MMD space at each point. For a more detailed
discussion see [21] and [22]. For the complex generative model and the squared MMD
loss we consider here this Riemannian metric tensor can be expressed as (taken from [1,
see p.7]):

F (θ) =

∫
U

∫
U
∇θGθ(u)>∇2∇1k (Gθ(u), Gθ(v))∇θGθ(v)U(du)U(dv) (2.7)

where the matrix ∇1∇2k(x, y) has ij-th entry ∂xi∂yjk(x, y) for i, j = 1, . . . , d. As was the
case with the gradient, the integrals in (2.7) are often intractable and so instead we will
consider a U-statistic approximation for the metric tensor found in [1, p. 8]:

FU(θ) =
1

n(n− 1)

∑
i 6=j

∇θGθ (ui)
>∇2∇1k (Gθ (ui) , Gθ (uj))∇θGθ (uj) (2.8)

where again the {ui}ni=1 are i.i.d. samples from U. This is an unbiased estimator for F
and with this we can now present in Algorithm 2 below (see [1, p. 8]) a natural gradient
descent algorithm for minimizing the squared MMD:

4This estimator is an unbiased estimator for the squared MMD.

28

2.2. COMPUTING THE JACOBIAN ∇θGθ

Algorithm 2: Natural Stochastic Gradient Descent

Input: data {yj}mj=1, initial parameter vector θ̂
(0)
∈ Θ, step-size sequence (ηr)r∈N

Output: Sequence of parameter vectors (θ̂
(r)

)r∈N
1 repeat

2 Sample {ui}ni=1
i.i.d.∼ U and compute ỹi = G

θ̂
(r−1)(ui) for i = 1, . . . , n ;

3 Compute U-statistic estimate of gradient Ĵ
θ̂
(r−1) (Qm) ;

4 Compute U-statistic estimate of Riemann metric tensor FU

(
θ̂

(k−1)
)

;

5 Update parameter vector θ̂
(r)

= θ̂
(r−1)

− ηrF−1
U

(
θ̂

(r−1)
)
Ĵ
θ̂
(r−1) (Qm)

6 until convergence or max number of steps reached ;

Due to the inversion of the U-statistic approximation FU , which is in general a dense
matrix, and the additional matrix vector multiplication in the update step, Algorithm 2
has a higher cost (see [1, p. 8]) of O((n2 + nm)p2d+ p3) per iteration. We thus see that
in cases where the dimension p of the parameter space is high that this inversion at every
step will make the computational cost of Algorithm 2 restrictive. For moderate values of
p however this algorithm is not that much more computationally costly and as discussed
above should provide faster convergence as the steps taken are now in the direction of
steepest descent of the cost function in MMD space.

We will now move on to the next subsection where we will discuss ways to compute
the Jacobian ∇θGθ which is required in both algorithms above.

2.2 Computing the Jacobian ∇θGθ

In both Algorithm 1 and 2 of the previous subsection the Jacobian ∇θGθ is required. As
such, we will need a way of computing it. For the generative model we are considering
the generator Gθ(u) is a collection of observations of the solution of the IVP (1.1). Thus,
computing the Jacobian ∇θGθ will involve computing partial derivatives of the state vec-
tor x, where we have dropped the superscripts (i) in (1.1) as now we are considering 1
particular sample, w.r.t. the parameters θ. Such partial derivatives quantify the sensi-
tivity of the solution with respect to changes in the parameters, and the study of such
quantities is known as ‘sensitivity analysis’. Since we are dealing with systems of first
order differential equations we shall only deal here with such systems. For clarity we will
simplify our notation and write the system we are considering as:

ẋ = fθ(x), x(0;θ) = x0 (2.9)

where we have essentially absorbed any randomness from ξ, ε into the function fθ and the
vector x0 respectively and where we have made explicit the dependence of the solution
on the parameters by writing x = x(t;θ). We are interested in computing j(t,θ) :=
∇θx(t;θ). The entries of this matrix j are what is referred to in the literature as ‘first-
order’ sensitivity coefficients, see for instance [23]. The most straightforward method to
computing the entries of this matrix is through utilizing a finite-difference approximation
(e.g. see [23, p. 46]):

jrs(t;θ) =
∂xr
∂θs
≈ 1

∆θs
(xr(t;θ + ∆θses)− xr(t;θ)) (2.10)

29

2.2. COMPUTING THE JACOBIAN ∇θGθ

where ∆θs is a small perturbation and es is the s-th standard basis vector. The use of
finite-differences here however has two potential problems. The first is that for each entry
of the matrix j we are required to solve the IVP (2.9) once more in order to compute the
first term in the numerator of (2.10). This can become restrictive when p is large. The
second problem comes from numerical inaccuracies in the finite-difference approximation.
As such we will not be using this method and we will instead use, for this chapter5, the
method we will now describe which essentially involves deriving a system of equations for
the time evolution of j.

We will now derive this system which can then be coupled with (2.9) and solved
simultaneously via the same method we use to solve (2.9). In order to derive this system
we compute the time derivative of j as follows:

dj

dt
=

d

dt
∇θx

= ∇θẋ
= ∇θfθ(x)

= ∇θfθ(x) + (∇xfθ(x)) j

where in the second equality above we exchanged the order of differentiation and in the
final equality we utilized the chain rule. This is justified if we assume that both f and x
are continuously differentiable.

We now need to determine the initial condition for j. In general, the parameters may
appear in the initial condition. We shall assume that the random vector x0 can be written
as x0 = h(θ; ζ) where h is some deterministic function and ζ is a random vector which
does not depend on θ. Such an assumption is what is known in the machine learning
community as the ‘Reparametrization Trick’ (see for instance [24] and [25]). In this case
we have,

j(0,θ) = ∇θx(0;θ)

= ∇θh(θ; ζ)
(2.11)

Combining all of this we can solve simultaneously the following system:

dx

dt
= fθ(x), x(0;θ) = x0 = h(θ; ζ)

dj

dt
= ∇θfθ(x) + (∇xfθ(x)) j, j(0,θ) = ∇θh(θ; ζ)

(2.12)

Remark. If the initial condition does not depend on the parameters θ then we have
j(0,θ) = 0.

We note that the dimension of the system we need to solve has increased by p × d.
For problems with either large p or large d this method can thus become quite compu-
tationally expensive if no effort is made to find efficient methods of solving (2.12). This
shall be address partly in Chapter 3 when we discuss the ‘adjoint’ method.

5In the next chapter we will be considering the use of the so called Adjoint Method to compute the
gradient of the squared MMD and as such we will not require the Jacobian ∇θGθ.

30

2.2. COMPUTING THE JACOBIAN ∇θGθ

For a more detailed discussion of this method the interested reader is directed to [26].
This approach will be utilized in Numerical Experiment 1 which will be presented in
Chapter 4. We note that similar expressions for the Jacobian can also be derived for
Stochastic Differential Equations, see for example [27].

31

Chapter 3

Reverse Differentiation of ODEs

In this Chapter the use of the so called Adjoint Method will be investigated to help with
the parameter estimation problem. As was noted in Chapter 2 when the dimension of the
parameter space is high Algorithm 2 can become infeasible. Further, even in Algorithm
1 the computation of the sensitivity matrix j can also quickly become infeasible as the
dimension of the ODE system needed to be solved (for each simulated system) increases
by p × d. It will thus prove useful to consider the Adjoint Method (also known as the
Pontraygin Principle) which will provide us with a way of obtaining the gradient of the
squared MMD without having to compute the sensitivity matrix j. The Adjoint Method
will be derived in this chapter and then it will be applied to some numerical examples
which will be presented in Chapter 4.

3.1 Derivation of the Adjoint Method

In this section the Adjoint Method will be derived. The method can be applied to many
different problems and frameworks and so it will be presented first for a more general one.
This will be done in the first subsection of this section. After having done this a worked
example will be presented. Following this worked example the method shall be developed
for the particular types of problems this project looks at.

3.1.1 Adjoint Method for Time-dependent Problems

For the remainder of this subsection it shall be assumed that the gradient of a scalar-
valued function is a row-vector, this is to make the derivation clearer1. The treatment in
section 2 of [28] is followed. In this subsection we will consider the following problem:

minimize
θ∈Θ

C(x,θ), where C(x,θ) ≡
∫ T

0
f(x,θ, t)dt

subject to h(x, ẋ,θ, t) = 0
g(x(0),θ) = 0

(3.1)

where again θ is a vector of unknown parameters, x is a (possibly vector-valued) function
of time, h(x, ẋ,θ, t) = 0 is an ODE in implicit form2, and g(x(0),θ) = 0 represents the
initial condition on the ODE. It shall be assumed that the Jacobian ∇xg is everywhere

1The ij-th entry of a Jacobian matrix ∇xy is still ∂xj
yi.

2If we have an ODE in explicit form, ẋ = h̄(x,θ, t), this can be converted into implicit form by setting
h(x, ẋ,θ, t) = ẋ− h̄(x,θ, t).

32

3.1. DERIVATION OF THE ADJOINT METHOD

non-singular. If one wishes to solve the optimization problem (3.1) via a gradient-based
algorithm then the gradient ∇θC is required. If we assume that the function f is suffi-
ciently well-behaved so that the order of integration and differentiation can be exchanged
then one obtains,

∇θC(x,θ) =

∫ T

0

[∇θf(x,θ, t) +∇xf(x,θ, t)∇θx] dt

where we have utilized the chain rule. As discussed in section 2.2 computation of ∇θx can
become quite computationally expensive for large p. The Adjoint Method aims to avoid
having to compute this sensitivity matrix by developing a second ODE for the so called
adjoint vector λ which is then used to compute the required gradient ∇θC. This method
will now be derived. The first thing to do is to introduce the Lagrangian associated with
the constrained optimization problem (3.1) namely,

L ≡
∫ T

0

[
f(x,θ, t) + λTh(x, ẋ,θ, t)

]
dt+ µTg(x(0),θ) (3.2)

where the vector of Lagrange multipliers λ is a function of time and µ is a second vector
of multipliers corresponding to the initial condition constraints. Since the two constraints
h = 0 and g = 0 are satisfied everywhere we have the flexibility to set the values of the
multipliers λ, µ to any values we like and further we have ∇θL = ∇θC. Taking the
gradient yields:

∇θL =

∫ T

0

[
∇θf +∇xf∇θx + λT (∇θh+∇xh∇θx +∇ẋh∇θẋ)

]
dt

+ µT
(
∇θg +∇x(0)g∇θx(0)

) (3.3)

where again we have utilized the chain rule. The integrand contains terms in both ∇θx
and ∇θẋ. Integration by parts is used to eliminate the second one as follows:∫ T

0

λT∇ẋh∇θẋdt =
[
λT∇ẋh∇θx

]T
0
−
∫ T

0

[
λ̇
T∇ẋh+ λTdt∇ẋh

]
∇θxdt

where dt denotes the time derivative d
dt

. Using this in (3.3) and collecting terms yields:

∇θL =

∫ T

0

[(
∇xf + λT (∇xh− dt∇ẋh)− λ̇

T∇ẋh
)
∇θx +∇θf + λT∇θh

]
dt

+ λT∇ẋh
∣∣
T
∇θx(T) +

(
−λT∇ẋh+ µT∇x(0)g

)∣∣
0
∇θx(0) + µT∇θg

(3.4)

The idea behind the Adjoint Method is to choose λ and µ appropriately so as to make
all terms involving ∇θx in (3.4) vanish. Thus, if one chooses to set λ(T) = 0 as well

as µT = λT ∇ẋh|0
(
∇x(0)g

)−1
the terms ∇θx(T) and ∇θx(0) are cancelled out. Then in

order to avoid having to compute ∇θx at all other times in (0, T) one can set,

∇xf + λT (∇xh− dt∇ẋh)− λ̇
T∇ẋh = 0 (3.5)

33

3.1. DERIVATION OF THE ADJOINT METHOD

These computations yield the Adjoint Method algorithm for computing ∇θC as fol-
lows:

Algorithm 3: Adjoint Method for Computing ∇θC
1 Integrate h(x, ẋ,θ, t) = 0 from t = 0 to T with initial conditions g(x(0),θ) = 0 to

obtain x;

2 Integrate ∇xf + λT (∇xh− dt∇ẋh)− λ̇
T∇ẋh = 0 from t = T to 0 with initial

conditions λ(T) = 0 to obtain the adjoint vector λ;

3 Set ∇θC =
∫ T

0

[
∇θf + λT∇θh

]
dt+ λT∇ẋh

∣∣
0

(
∇x(0)g

)−1∇θg

This algorithm thus achieves the computation of the gradient ∇θC by solving a single
additional ODE of the same dimension as our original ODE. This is to be compared
with the original method which was used in Chapter 2 where a system of p × d ODEs
was required to be solved. Having presented the method a worked example will now be
presented in the following subsection in order to get a better grasp on how the method
works.

3.1.2 A Simple Worked Example

A simple closed-form problem will now be considered to demonstrate the Adjoint Method.
This example is taken from [28, see p.4]. Suppose one is interested in computing the
gradient of: ∫ T

0

xdt

subject to the constraints ẋ = bx and x(0)− a = 0. The parameters for this example are
θ = (a, b)T . The function g is g(x(0),θ) = x(0)−a, the function h is h(x, ẋ,θ, t) = ẋ− bx
and the function f is f(x,θ, t) = x. The steps in Algorithm 3 are now followed:

1. Integrating the ODE gives x(t) = aebt, where the initial condition has been used.

2. The following can be computed: ∂xf = 1, ∂xh = −b, ∂ẋh = 1 and so the adjoint
ODE which must be solved is:

1− bλ− λ̇ = 0

subject to the initial condition λ(T) = 0. Solving this backwards in time yields
λ(t) = b−1

(
1− eb(T−t)

)
.

3. The following can be computed: ∇θf = (0, 0), ∇θh = (0,−x), ∂x(0)g = 1, and
∇θg = (−1, 0). Thus, the first component of the gradient is:

λ(0) · (1)−1 · (−1) = b−1(ebT − 1);

while the second component is,∫ T

0

−λxdt =

∫ T

0

b−1(eb(T−t) − 1)aebtdt =
a

b
TebT − a

b2
(ebT − 1)

34

3.1. DERIVATION OF THE ADJOINT METHOD

As a check that the method works one can compute the total derivative directly by first
computing the objective function as so:∫ T

0

xdt =

∫ T

0

aebtdt =
a

b
(ebT − 1).

Taking the gradient of this expression with respect to θ = (a, b)T yields the same results
obtained above.

Having gone through a simple worked example the next step is to discuss how the
Adjoint Method can be applied to the types of parameter estimation problems considered
in this project; this is done in the next subsection.

3.1.3 Application of the Adjoint Method to Computing the MMD
gradient

In this subsection the Adjoint Method will be adapted to help with the parameter estima-
tion problem discussed in Chapter 2. In particular it shall be shown how the optimization
problem (2.1) can be moulded to resemble the problem (3.1).

The vector of unknown parameters will still be θ. For each simulated trajectory the
governing ODE and the corresponding initial condition is given by (1.1). In order to fit
this in the framework of (3.1) the individual state vectors {x(i)}ni=1 can be stacked on top
of each other as so:

x =

x(1)

...
x(n)


By doing so the new state vector x satisfies the following IVP:

dx

dt
= φ(x(t); ξ), x(0) = ε (3.6)

where ξ, ε, φ are defined by:

ξ =

ξ(1)

...

ξ(n)

 , ε =

ε(1)

...
ε(n)

 , φ(x(t); ξ) =

fθ(x
(1)(t); ξ(1))

...

fθ(x
(n)(t); ξ(n))


The ODE can be specified in the implicit form in (3.1) by defining h to be:

h(x, ẋ,θ, t) = ẋ− φ(x; ξ) (3.7)

while the initial condition is specified by g = 0 where g is defined as:

g(x(0),θ) = x(0)− ε (3.8)

The only thing which remains to be explicitly specified is the cost function C. In (2.1)
the squared MMD was the cost function which needed to be minimised. In Algorithms 1
and 2 of Chapter 2 the U-statistic approximation (2.5) was used a proxy for the squared
MMD since this can not in general be computed analytically. Since it is this proxy which

35

3.1. DERIVATION OF THE ADJOINT METHOD

the algorithm attempts to minimize it shall be taken as the cost function C in (3.1), i.e.
C will be defined as follows:

C(x,θ) =
1

n(n− 1)

∑
i 6=j

k
(
v(i),v(j)

)
− 2

mn

n∑
i=1

m∑
j=1

k
(
v(i), ṽ(j)

)
+

1

m(m− 1)

∑
i 6=j

k
(
ṽ(i), ṽ(j)

)
(3.9)

where the {v(i)}ni=1 and {ṽ(j)}mj=1 are defined by,

v(i) =

 x(i)(t0)
...

x(i)(tN−1)

 , ṽ(j) =

 x̃(j)(t0)
...

x̃(j)(tN−1)


i.e. v(i) is the vector of observations of the ith simulated state on the time-grid, 0 = t0 <
t1 < · · · < tN−1 = T , upon which we are observing the data and ṽ(j) is the vector of
observations of the jth true state on the time-grid.

The cost function C can not easily be written in the form given in (3.1). It is thus
necessary to slightly modify the derivation of the Adjoint Method given in subsection
3.1.1. The only difference will be how the cost function term is dealt with. First, one
can note that the cost function does not depend explicitly on the parameters θ and so
one can write C(x,θ) = C(x). The next thing to note is that the cost function only
depends on the state vector x on the time grid t0 < · · · < tN−1 and so one can write
C ≡ C(x(t0), . . . ,x(tN−1)). So instead of the Lagrangian given by (3.2) one instead has:

L ≡ C(x(t0), . . . ,x(tN−1)) +

∫ T

0

[
λTh(x, ẋ,θ, t)

]
dt+ µTg(x(0),θ) (3.10)

Thus, the derivation in subsection 3.1.1 follows through almost exactly the same except
for the first term in (3.10). Taking the gradient3 of this term w.r.t the parameters θ
yields, via the chain rule:

∇θC =
N−1∑
r=0

(
∇x(tr)C

)
∇θx(tr)

=

∫ T

0

[
N−1∑
r=0

(
∇x(tr)C

)
δ(t− tr)

]
∇θx(t)dt

where δ(·) denotes the Dirac Delta function here. Having written the gradient as an
integral of a function times ∇θx(t) the remainder of the derivation in subsection 3.1.1 can
be repeated and one can obtain the corresponding adjoint equation to be:

N−1∑
r=0

(
∇x(tr)C

)
δ(t− tr) + λT (∇xh− dt∇ẋh)− λ̇

T∇ẋh = 0

Utilizing the definition of h one can thus obtain the adjoint ODE to be:

N−1∑
r=0

(
∇x(tr)C

)
δ(t− tr)− λT (∇xφ)− λ̇

T
= 0 (3.11)

3This is not the gradient which takes into account the constraints h = 0 and g = 0 and just corresponds
to taking the gradient of f w.r.t. θ in the derivation in subsection 3.1.1.

36

3.1. DERIVATION OF THE ADJOINT METHOD

together with the initial condition λ(T) = 0. This ODE can be coupled with the ODE
h = 0, using the observed state x(T) as the corresponding initial condition for x and
solved backwards to give the adjoint vector λ. Once this adjoint vector is obtained the
gradient of the cost is given by:

∇θC = −
∫ T

0

λT∇θφdt+ λT∇θg (3.12)

In the numerical experiments which shall follow the initial condition ε will be independent
of θ and as such the second term in (3.12) will vanish. Before presenting the numerical
experiments demonstrating the Adjoint Method in the next chapter four brief remarks
will be made:

1. In the method described above the adjoint ODE is coupled with the state vector
ODE and solved backwards in time. For the ODE models considered in this project
integrating backwards in time using as initial condition the final observation should
theoretically yield the same state trajectory x(t) as obtained via integrating forwards
the IVP. However, there can often be numerical issues which mean that integrating
backwards in time yields drastically different results. In other words, the numerical
ODE integrator might not be time-reversible. In future work this issue should be
investigated and more advanced numerical ODE solvers which are time-reversible
should be considered. For the numerical experiments presented here this was not
an issue.

2. The forcing terms involving Dirac Deltas which appear in the adjoint ODE (3.11)
essentially mean that this ODE must be solved separately on sub-intervals starting
with (tN−1, tN−2) and working backwards to (t1, t0); on each sub-interval the term
∇x(tr)C acts as the initial condition and is then removed from consideration, leaving
the unforced ODE to be solved on each sub-interval. To illustrate this more clearly
we start with the first sub-interval (tN−1, tN−2) and set λ(tN−1) = 0 (recall tN−1 =
T). However, we shall pass ∇x(tN−1)C as the initial condition for this sub-interval to
the numerical ODE solver (note: this initial condition is NOT stored in the array
holding the adjoint vector) which will solve the unforced ODE. On the next sub-
interval (tN−2, tN−3) the term ∇x(tN−2)C is passed to the numerical ODE solver as
the initial condition and again the unforced ODE is solved. This process is repeated
until we reach the last sub-interval (t1, t0).

3. The term ∇xφ has a block diagonal structure due to the form of x and φ. This
structure is shown below:

∇xφ =


∇x(1)fθ(x

(1); ξ(1))

∇x(2)fθ(x
(2); ξ(2))

. . .

∇x(n)fθ(x
(n); ξ(n))


So the unforced adjoint ODE which will be solved on each sub-interval can be seen
to decouple into n ‘independent’ systems. Thus, on each sub-interval the solution
of these n systems can be done in parallel leading to computational speed-ups.

4. Once the adjoint vector λ has been computed the integral in (3.12) must be calcu-
lated. Since the integrand is only known on a discrete time-grid a simple Riemann
sum approximation of the integral will be made using these values.

37

3.1. DERIVATION OF THE ADJOINT METHOD

A brief discussion will be made in the next subsection on the computational cost of the
Adjoint Method.

3.1.4 Computational Cost of the Adjoint Method

Following the derivation given in the preceding subsections one can see that the Adjoint
Method involves, for each simulated system, the solution of a system of ODEs of dimen-
sion d + d = O(d). Thus, the dimension of the new system of ODEs which needs to be
solved for each simulated system is independent of the number of parameters. This is
to be compared to the system needed to be solved in Algorithms 1 and 2 of Chapter 2
which had dimension d + p× d, i.e. which was dependent on the number of parameters.
Algorithm 1 also involved O((n2 +nm)dp) multiplications at each iteration of the gradient
descent procedure. In contrast, if one uses the Adjoint Method to obtain the gradient of
the cost at each iteration the number of multiplications required is of order O(ndp). While
the Adjoint Method is computationally faster (theoretically) it is still an open question
of whether this approach can be used to compute the Riemann Metric Tensor as well so
as to yield an adjoint-method natural gradient descent algorithm. This is an interesting
question which may be researched further at a later stage.

38

Chapter 4

Numerical Experiments

In this chapter we will present our numerical experiments. These were coded in Python
3 and the GitHub page mentioned in the Abstract contains Jupyter Notebooks for these
experiments.

4.1 Numerical Experiment 1: The Schnakenberg Model

In this section we shall present the first numerical experiment we undertook which will
demonstrate Algorithms 1 and 2 presented in section 2.1. We will first set up the problem,
then we will have a brief discussion on some coding aspects of our implementation of the
algorithms, followed finally by a presentation of our results.

4.1.1 Problem Setup

For our first numerical experiment we shall focus on a particular system of first order
differential equations called the Schnakenberg Model [29] which is a system of two coupled
first order differential equations given below:

ẋ1 = θ1x
2
1x2 + θ2 − θ3x1

ẋ2 = −θ1x
2
1x2 + θ4

(4.1)

This is a well-known model which models a chemical reaction between two species; x1

is the concentration of the first and x2 is the concentration of the second. The param-
eters for this system are θ = (θ1, θ2, θ3, θ4)T all of which are assumed to be positive,
i.e. θi > 0 for i = 1, 2, 3, 4. The dimension of our parameter space is thus p = 4.
We will assume that the parameters θ are unknown and that our initial conditions are
noisy. To be more specific we make the following assumptions about our initial conditions:
x1(0) = ε1, x2(0) = ε2 where the distribution of εq is a truncated normal distribution
with mean µq > 0 and standard deviation σq > 0 truncated to the interval (0,∞) for
q = 1, 2. Since our unknown parameters are constrained to be positive it will prove use-
ful for the implementation of the gradient descent procedures that we reparametrize the
model so as to ensure that the parameters are real-valued. Here we will choose1 to make
the reparametrization as follows: θi = ewi for i = 1, 2, 3, 4. We now have wi ∈ R and so
our parameter vector w ∈ W = R4.

1The choice of reparametrization can affect the performance of Algorithm 1 whereas Algorithm 2 is
not affected by this choice due to the natural gradient adaption (at least theoretically).

39

4.1. NUMERICAL EXPERIMENT 1: THE SCHNAKENBERG MODEL

We can now explicitly formulate the generative model in terms of the setup in sec-
tion 1.1. Our vector x(i) is now the vector x(i) = (x

(i)
1 , x

(i)
2)T . ξ(i) is dropped and

ε(i) = (ε
(i)
1 , ε

(i)
2)T where for each i the components of ε(i) are independent and distributed

according to the truncated normal distributions mentioned above. We thus have U = R2

and U is the probability measure corresponding to a 2-dimensional random vector of in-
dependent components the q-th of which has a truncated normal distribution on (0,∞)
with mean µq and standard deviation σq for q = 1, 2. The observation function h is the
identity here and the white noise terms e(i) are dropped. The function on the RHS of the
ODE is given by:

fw(x) =

(
ew1x2

1x2 + ew2 − ew3x1

−ew1x2
1x2 + ew4

)
(4.2)

We shall assume that given an initial condition for x(i) we can solve the Schnakenberg
model via a numerical ODE solver and that we observe the solution on a time grid
0 = t0 < t1 < · · · < tN−1 = T for some fixed T ∈ (0,∞). The codomain of our generator
is thus X = R2N as we have 2 components in the state vector and we observe each on a
time grid with N grid-points. We thus have that given the sampled ui ∼ U where ui = ε(i)

the generator outputs:

yi = Gw(ui) =



x
(i)
1 (t0)

x
(i)
1 (t1)

...

x
(i)
1 (tN−1)

x
(i)
2 (t0)

x
(i)
2 (t1)

...

x
(i)
2 (tN−1)


∈ X

We note that we have chosen to stack the observations by first listing the first components
followed by the second components. Our goal as discussed earlier is to infer the true
parameter vector θ0, which is related to w0 via the reparametrization above, by using the
samples {yi}mi=1. Before we can begin the parameter estimation procedure we must now
consider the choice of kernel function k which will specify the squared MMD. We choose
to take k to be the Gaussian kernel:

k(x, y) = exp
(
−σ‖x− y‖2

)
(4.3)

where ‖ · ‖ is the standard Euclidean norm on X = R2N and σ is a parameter controlling
the bandwidth of the Gaussian. This choice of kernel is made as it is a characteristic
kernel (as demonstrated in section 1.3) and it is also relatively easy to work with. We
note that due to the nature of the Euclidean norm in (4.3) the order in which we stack
the observations in the yi’s does not play a role in the results.

Having set up all our notation the only thing remaining before we have everything
ready for the implementation is to derive everything which is needed to compute the U-
statistic approximations of the gradient of the squared MMD and of the metric tensor.
We do this now. First we need to derive an expression for the Jacobian ∇wGw. Due to

40

4.1. NUMERICAL EXPERIMENT 1: THE SCHNAKENBERG MODEL

how we stacked the components in Gw(u) this Jacobian takes the following form:

∇wGw(u) =



0 0 0 0
∂w1x1(t1) ∂w2x1(t1) ∂w3x1(t1) ∂w4x1(t1)
∂w1x1(t2) ∂w2x1(t2) ∂w3x1(t2) ∂w4x1(t2)

...
...

...
...

∂w1x1(tN−1) ∂w2x1(tN−1) ∂w3x1(tN−1) ∂w4x1(tN−1)
0 0 0 0

∂w1x2(t1) ∂w2x2(t1) ∂w3x2(t1) ∂w4x2(t1)
∂w1x2(t2) ∂w2x2(t2) ∂w3x2(t2) ∂w4x2(t2)

...
...

...
...

∂w1x2(tN−1) ∂w2x2(tN−1) ∂w3x2(tN−1) ∂w4x2(tN−1)


(4.4)

where the two rows of 0’s in the matrix above are due to the fact that the initial conditions
for the state vectors are independent of the parameters. As mentioned in section 2.2
the Jacobian can be determined by finding the system of equations governing the time
evolution of the first-order sensitivity coefficients. We now derive this system for the
Schnakenberg model. We compute,

∇wfw(x) =

(
ew1x2

1x2 ew2 −ew3x1 0
−ew1x2

1x2 0 0 ew4

)
(4.5)

∇xfw(x) =

(
2ew1x1x2 − ew3 ew1x2

1

−2ew1x1x2 −ew1x2
1

)
(4.6)

Plugging (4.5) and (4.6) into the system of equations (2.12) yields the following system
which must be solved:

ẋ1 = ew1x2
1x2 + ew2 − ew3x1

ẋ2 = −ew1x2
1x2 + ew4

ġ11 = ew1x2
1x2 + g11(2ew1x1x2 − ew3) + g21e

w1x2
1

ġ12 = ew2 + g12(2ew1x1x2 − ew3) + g22e
w1x2

1

ġ13 = −ew3x1 + g13(2ew1x1x2 − ew3) + g23e
w1x2

1

ġ14 = g14(2ew1x1x2 − ew3) + g24e
w1x2

1

ġ21 = −ew1x2
1x2 − 2g11e

w1x1x2 − g21e
w1x2

1

ġ22 = −2g12e
w1x1x2 − g22e

w1x2
1

ġ23 = −2g13e
w1x1x2 − g23e

w1x2
1

ġ24 = ew4 − 2g14e
w1x1x2 − g24e

w1x2
1

(4.7)

where the gij are the components of the sensitivity matrix g (note: we call the sensitivity
matrix g instead of j here). This system will then be solved with a numerical ODE solver
to yield solutions on the time grid we are considering, which will allow us to compute the
matrix in (4.4).

Having detailed a method for computing the Jacobian ∇wGw we now move onto
deriving an expression for ∇1k(x, y). We work component-wise first:

∂xqk(x, y) = −2σ(xq − yq)k(x, y)

41

4.1. NUMERICAL EXPERIMENT 1: THE SCHNAKENBERG MODEL

We can thus see that we have,

∇1k(x, y) = −2σk(x, y)(x− y) (4.8)

The final piece we need is the matrix ∇2∇1k(x, y). We proceed component-wise as before:

∂yp∂xqk(x, y) = ∂yp(−2σ(xq − yq)k(x, y))

= 2σδpqk(x, y)− 2σ(xq − yq)∂ypk(x, y)

= 2σδpqk(x, y)− 2σ(xq − yq)(2σ(xp − yp)k(x, y))

= 2σk(x, y)(I − 2σ(x− y)(x− y)T)pq

where δpq is the Kroenecker delta and I is a d× d identity matrix. We can thus see that
we have,

∇2∇1k(x, y) = 2σk(x, y)(I − 2σ(x− y)(x− y)T) (4.9)

We now have all the various bits needed to implement Algorithms 1 and 2 from section
2.1. We will now move onto the next subsection where we make some brief remarks on
some coding aspects of our implementation of the algorithms.

4.1.2 Some Comments on the Implementation

In this subsection we make some brief remarks regarding our implementation of the Algo-
rithms 1 and 2 for the Schnakenberg model. For this numerical experiment we choose to
make 6 brief remarks regarding some aspects of the code we think are worth mentioning:

1. In order to solve the combined system of ODEs (4.7) we utilized the numerical
ODE solver odeint from the Python package scipy.integrate.

2. When simulating the n trajectories from the Schnakenberg model we originally used
a for loop to iterate over all the initial conditions and solve each IVP separately.
This approach however is not the most efficient, especially in light of the fact that
each simulated trajectory is independent from the other. We thus utilized the
functions Parallel and delayed from the Python package joblib [30] together
with the Python package multiprocessing to utilize all the CPU cores available
to us to parallelize the simulation of the independent trajectories.

3. For both algorithms it will be necessary at each iteration to compute the kernel
over all pairs of points from both the simulated set and true data set together
with all pairs between the two sets. In order to carry out these computations
both efficiently and simply we utilized the function cdist from the Python package
scipy.spatial.distance. This function essentially takes in two arrays and then
returns an array of all pairwise distances between the points specified by the rows
of the two arrays. This allows us to use vectorization to quickly evaluate the kernel
over all these pairs and then sum all the terms up according to (2.5).

4. In each iteration it is necessary to compute expressions like (2.4) and (2.8). These
expressions can be expressed in Einstein summation convention and so for simplicity
of coding as well as computational efficiency we utilize the function einsum found
in the Python package numpy to compute these terms.

42

4.1. NUMERICAL EXPERIMENT 1: THE SCHNAKENBERG MODEL

5. In Algorithm 2 it is necessary to invert the U-statistic approximation FU at each
iteration. This matrix is theoretically symmetric and invertible, but due to numer-
ical issues can seem both non-symmetric and singular which will cause the code to
break or to not give sensible results. To get around these issues we symmetrize the
computed U-statistic by averaging it with its transpose and we then add a small
positive diagonal perturbation term to it to ensure its invertiblity.

6. In our code for both Algorithms we include a tolerance parameter which will stop
the gradient descent algorithm if the next parameter vector is within this tolerance
from the previous vector (where the distance is computed using the Euclidean norm).
We however, decide to set this tolerance to 0 as such a stopping criterion is very
sensitive to the scale of the particular problem and so is hard to tune.

4.1.3 Results

We will now present our results in this subsubsection. We chose to set the true parameter
vector for the model to be θ0 = (1, 2, 3, 4)T . Taking the natural logarithm of each com-
ponent yields w0. We tried to recover this vector. The time grid upon which we make
observations was determined by setting T = 1, N = 10 and taking a uniformly spaced
grid. For the initial conditions we set the parameters of the truncated normal distribu-
tions to be µq = 1, σq = 0.5 for both q = 1, 2. For the implementations of both Algorithms
1 and 2 we decided to take m = 1000 true data points and n = 100 simulated data points
at each iteration of the gradient descent. Our step-size sequence for both algorithms was
taken to be a constant sequence with entries 0.1 (i.e. we took a constant step-size of
0.1). We also chose to make no more than 4000 steps in our gradient descent algorithms.
As discussed after presenting Algorithm 1 we made multiple runs from different starting
locations. We chose the starting vectors at random; in particular we drew 30 vectors at
random where each component was independently drawn from a uniform distribution on
[0.01, 10.01]. The logarithm of each component was then taken to obtain our 30 starting
points for ŵ(0). We used the same vectors for both Algorithms.

As expected, not all of the randomly chosen starting points gave results which con-
verged to the true parameter vector within the maximum number of iterations. Some runs
did converge to the truth. In general Algorithm 2 converged faster than Algorithm 1 and
also converged to a vector ‘closer’ to the true vector. We include in Figure 4.1 on the next
page plots of the results for one particular starting point, ŵ(0) = (2.05,−1.70, 1.82, 0.75)T

which corresponds to θ̂
(0)

= (7.73, 0.18, 6.19, 2.12)T (each component is rounded to 2
decimal places). We include the results of both algorithms in the same plot for ease of
comparison. We chose this starting point as it shows that Algorithm 2 can converge much
faster to the truth than Algorithm 1. We note that within 4000 steps Algorithm 1 con-
verges to a vector not too far from the truth yet this takes longer than the convergence
of Algorithm 2 which manages to converge right at the truth in under 500 steps.

43

4.1. NUMERICAL EXPERIMENT 1: THE SCHNAKENBERG MODEL

Figure 4.1: Results for a particular run starting from the vector (7.73, 0.18, 6.19, 2.12)T

It might be the case that Algorithm 1 does not converge to the exact truth in this run
but instead to something close to it due to the discretisation of both the ODE and the
gradient of the squared MMD. However, it is important to stress that Algorithm 1 did
converge closer to the true parameter vector in some of the other runs we made, though
Algorithm 2 typically got closer. Even in the run presented above Algorithm 1 does not
do that bad and the parameter vector which achieved the lowest score, while differing a
bit from the truth, still produces trajectories whose distribution is quite similar to the
true distribution. Figure 4.2 on the next page shows plots of simulated trajectories using
the true vector, the resulting vector from Algorithm 1 and the one from Algorithm 2.
These plots show that the distributions are quite similar.

44

4.2. NUMERICAL EXPERIMENT 2: THE SCHNAKENBERG MODEL

Figure 4.2: Sampled trajectories using the truth and the results from the particular run
of both algorithms shown in Figure 4.1. The first row are plots of the first component of
the state vector against time, the second row shows the second component against time
and the third row shows phase plots.

The added computational cost of Algorithm 2 is negligible here, and the cost of the
algorithm is completely dominated by the generation step. As such, the time to run both
algorithms was not that different.

4.2 Numerical Experiment 2: The Schnakenberg Model

In this section the Adjoint Method shall be applied to the Schnakenberg Model which
was studied in Numerical Experiment 1. This problem had p = 4 and so the dimension
of the parameter space is not large, however it shall be presented as a check that the
method works. A few brief remarks on the implementation will now be made in the next
subsection.

4.2.1 Some Comments on the Implementation

In this subsection some brief remarks will be made about the implementation of the
Adjoint Method for the Schnakenberg Model. For this numerical experiment two brief
remarks regarding the implementation will now be made:

45

4.2. NUMERICAL EXPERIMENT 2: THE SCHNAKENBERG MODEL

1. Deriving an expression for the terms ∇x(tr)C in (3.11) is possible, however the
derivation is quite messy and involved. This derivation was undertaken and then
translated into code. The resulting algorithm was very slow as the derivatives
involved a double sum and it was very difficult to avoid using a double for-loop
for this. As such, the technique of Automatic Differentiation was deployed to help
with this problem. The Python package PyTorch [31] was chosen to implement this.
PyTorch is a Python-based scientific computing package which works with tensors,
which are similar to NumPy’s ndarrays, with the exception that tensors can utilize
a GPU to speed up computations. This project will not, however utilize a GPU,
but instead will rely on PyTorch’s autograd package to automatically compute
derivatives [32]. In particular, when requested PyTorch is able to track almost
any operation performed on a tensor and at the end a simple call can be made
to back-track along this operation history and compute a gradient automatically.
Utilizing this functionality enables vector-Jacobian products to be computed simply
and efficiently. For more details see the tutorial [33].

2. The ADAM gradient descent optimizer [19] was applied to this problem so as to
produce more stable results. This optimizer works well for stochastic objective
functions like the one under consideration and also has the nice property that it
naturally performs a form of automatic step-size adjustment which can be different
for each component of the parameter. For more details the interested reader is di-
rected to the reference [19] mentioned above. Pseudo-code for the ADAM optimizer
is included in Appendix B.

4.2.2 Results

The results obtained will now be presented. The true parameter vector was again set
to be θ0 = (1, 2, 3, 4)T . The time grid this time around was determined by setting
T = 1, N = 20 and again taking a uniformly spaced grid. The parameters of the truncated
normal distributions for the initial conditions was taken to be the same as in Numerical
Experiment 1. The values m = 1000 and n = 100 were again set to be the number of
true and simulated data points respectively. The step-size parameter, α, for the ADAM
optimizer was set to α = 0.75 while all the other tuning parameters needed for the
optimizer were set to the defaults given in [19] (see the pseudo-code given in [19, p. 2]).
An upper limit of 1000 steps was set for the gradient descent. Again multiple runs from
random2 starts were performed. The results of one particular run which converged to the

truth will now be presented. This run started from θ̂
(0)

= (2.59, 0.57, 3.21, 7.08)T (each
component is rounded to 2 decimal places). Plots of the resulting parameters and the
scores are presented in Figure 4.3 on the next page.

2These starts were drawn randomly in same way as described in Numerical Experiment 1.

46

4.2. NUMERICAL EXPERIMENT 2: THE SCHNAKENBERG MODEL

Figure 4.3: Results for a particular run starting from the vector (2.59, 0.57, 3.21, 7.08)T .
The dashed horizontal black lines are at the true parameter values.

It can be seen from Figure 4.3 above that the Adjoint-method gradient descent with
ADAM managed to converge to the true parameter vector in around 200 iterations and
it subsequently remained close to the truth for the remaining steps.

On the next page Figure 4.4 shows plots of simulated trajectories using the true vector
and the resulting vector which obtained the minimum estimated squared MMD on this
run. These plots show that the distributions are quite similar.

47

4.3. NUMERICAL EXPERIMENT 3: NEURAL NETS

Figure 4.4: Sampled trajectories using the truth and the results from the particular run
of the algorithm shown in Figure 4.3. The first row are plots of the first component of
the state vector against time, the second row shows the second component against time
and the third row shows phase plots.

It can thus be seen that the Adjoint-Method seems to be working and producing good
results. The dimension of the parameter space for this model is not that large and so
another experiment shall be considered where the paremeter space is higher dimensional.
This experiment will be presented in the next section.

4.3 Numerical Experiment 3: Neural Nets

4.3.1 Problem Setup

In this section ODEs whose RHS are given by feed-forward neural networks shall be
considered as a means of transforming distributions. To be more specific systems of first
order ODEs of the following form will be considered:

dx(t)

dt
= f(x(t)) (4.10)

where here x ∈ Rd and the function f : Rd 7→ Rd is a feed-forward neural net. Such
ODEs have been considered in the literature before; see for instance [34] where such
systems are referred to as ‘Neural ODEs’. In this paper these Neural ODEs are motivated

48

4.3. NUMERICAL EXPERIMENT 3: NEURAL NETS

by considering a limit where more layers and smaller step steps are taken in the following
sequence of transformations:

ht+1 = ht + f(ht, θt)

where t ∈ 0, . . . , T and ht ∈ Rd. Such sequences of transformations are often found
in models such as residual networks, recurrent neural network decoders and normalizing
flows. The paper discusses how the parameters of the neural net can be learned via opti-
mizing a loss function by using an Adjoint-method which is very similar to the approach
discussed in this chapter.

ODEs of the form (4.10) shall be considered as a means of transforming probability
distributions. The initial condition for (4.10) shall be taken to be random: x(0) = ε ∼ D
where D is some known distribution. The initial condition is then fed into the system
(4.10) for a certain amount of time T and the resulting solution x(T) will yield the output
by taking some (or all) of its components. By repeatedly drawing initial conditions from
D and feeding them into (4.10) a potentially different distribution will be obtained as the
output. The goal of this section will be to learn the neural net f which can transform the
distribution D into a specified target distribution DT at time T .

Remark. Since in this numerical experiment the observations might only involve some
components of the state vector the Adjoint Method presented in subsection 3.1.3 must be
slightly modified: the forcing terms involving Dirac Delta’s in (3.11) is adjusted so that
these forcing terms only affect the initial conditions for the components being observed.
For the components which aren’t being observed no forcing acts.

The neural net f considered here shall have one hidden layer with M nodes. The input
layer connects to the hidden layer via an affine transformation, each node in the hidden
layer then has an activation function applied to its output before connecting to the output
layer via another affine transformation. No activation function is applied at the nodes of
the output layer. This set-up is motivated by the Universal Approximation Theorem [35,
see p. 11] which tells us that such a neural net can approximate arbitrarily well any given
continuous function3 provided we use enough nodes in the hidden layer.

The set up of the neural net considered above means that the net is specified by a
total of 2Md + M + d parameters, 2Md of which are weights and M + d of which are
biases. Thus, the dimension of the parameter space for this model is p = 2Md+M + d.

It will now be made explicit how this model fits into the framework of the generative
model discussed in section 1.1. The vector x(i) corresponds to the ith simulated state
vector. ξ(i) is dropped and ε(i) is the ith sampled initial condition. Thus U = Rd and
U = D. The observation function h now picks out the necessary components of the
solution of the ODE and the e(i) are dropped. The function on the RHS of (1.1) is given
by the neural net f whose structure is specified as above. The unknown parameters θ
are the collection of weights and biases needed to specify the neural net. Again it shall
be assumed that given an initial condition for x(i) it is possible to solve the ODE (4.10)
via a numerical solver and that a collection of some (or possibly all) components of the

3The function does, however, have to technically be on a compact set; for our applications the input
distribution will be a multivariate Gaussian, the support of which is the whole of Rd and so is not
compact. However, the Gaussian density does decay exponentially fast and so this fact should mean that
good results can be obtained using such neural nets.

49

4.3. NUMERICAL EXPERIMENT 3: NEURAL NETS

output at time T will form the output from our generative model. Thus, given a sampled
ui ∼ U where ui = ε(i) the generator outputs:

yi = Gθ(ui) = (x
(i)
j (T))j∈A

where in the above the notation (x
(i)
j)j∈A is intended to denote a selection of components

of x(i)(T) where the set A is the collection of indices of these chosen components. Intu-
itively it should be easier to ‘hit’ the target distribution if the initial distribution is of
higher dimension than the target and also if the target distribution has less entropy. For
example, if we want to ‘hit’ a target distribution in 2 dimensions the initial distribution
should be in a higher dimension say, d = 4, and then the first two components of the
output from the neural net ODE, x(T), can be taken as the output of the generative
model.

Two different target distributions will be considered. The results of these will be
presented in the final two subsections of this chapter. Before this presentation some brief
comments will be made on the implementation in the next subsection

4.3.2 Some Comments on the Implementation

In this subsection some brief remarks will be made about the implementation of the
Adjoint Method for the neural net ODE model. In particular four brief remarks regarding
the implementation will now be made:

1. The PyTorch package torch.nn will be utilised to efficiently implement the neural
nets in these numerical experiments. No built-in optimizer from PyTorch is utilized
in these experiments; instead the gradient descent procedure utilizing the Adjoint
Method for computation of the gradient shall be implemented.

2. PyTorch’s automatic differentiation facilities will again be utilized to compute the
various vector-Jacobian products needed. This facility will be utilized even more in
these numerical experiments as opposed to Numerical Experiment 2 as it is much
more tedious to derive expressions for gradients of a neural net w.r.t. the parameters
than it was for the function on the RHS of the Schnakenberg Model.

3. The ADAM optimizer was again adopted in the gradient descent procedure.

4. The use of PyTorch is not guaranteed to be completely reproducible and as such
running the algorithm again can yield different results (even if the seed is set). This
is an issue which warrants further investigation, which is not within the scope or
time-frame of this project. This is a documented issue, see [36]. The notebooks
given on GitHub thus might give different results and may need to be rerun several
times to obtain good results. To counteract this there will be some files uploaded on
the GitHub page with the learned parameters for the neural nets which gave good
results.

4.3.3 Numerical Experiment 3.1: Gaussian Mixture

In this experiment the target distribution DT is taken to be a Gaussian Mixture in 1
dimension. To be more specific in this experiment a 50/50 mixture of an N (1, 0.52) and

50

4.3. NUMERICAL EXPERIMENT 3: NEURAL NETS

N (5, 1) was set to be the target. m = 1000 samples are drawn from this mixture as the
true data set. The initial distribution D was taken to be a bivariate-Gaussian distribution
with independent components each of which have mean 1 and standard deviation 0.5. The
neural ODE is solved up to time T = 1 using a numerical solver (odeint) on a uniform
time grid with 10 grid points. At time T = 1 the first component of the state vector is
observed as the output. The activation function for the nodes in the hidden layer is taken
to be tanh and M = 10 nodes are used in the hidden layer. Thus, the dimension of the
parameter space is p = 52, and so this experiment is a case where the parameter space is
high-dimensional. The initial parameters were set randomly by drawing p i.i.d. samples
from N (0, 1). In each iteration of the gradient descent algorithm n = 100 samples were
produced from the generative model. In Figure 4.5 below the estimated squared MMD
is plotted against iteration number.

Figure 4.5: Estimated Squared MMD against iteration for Gaussian Mixture target

From the figure above it can be seen that the score has quickly converged to near zero
in around 50 iterations. Even though the estimated score is close to zero it can still be
the case that the target distribution is not achieved. To investigate this the parameter
values which achieved the lowest score are used to simulate 1000 samples and these are
compared to the true data via a histogram and density estimation, the results of which
are shown in Figure 4.6 on the next page.

51

4.3. NUMERICAL EXPERIMENT 3: NEURAL NETS

Figure 4.6: Histograms and density estimates for true data and simulated data

From the Figure 4.6 above it can be seen that the simulated samples have a distribution
which is quite similar (at least visually) to the Gaussian Mixture target.

4.3.4 Numerical Experiment 3.2: The Make Circles Dataset

In this experiment the true data set (coming from the target distribution DT) is gener-
ated by utilizing the make_circles function from the Python package sklearn [37]. This
function generates a dataset consisting of two circles; a large and a small one. There is
the option of adding noise to jitter the points on these two circles. In this experiment
this option is used with the level of noise set by the value 0.1 in order to obtain sam-
ples which when plotted look like a ring (Dt is a distribution in 2-dimensional space).
m = 1000 samples are drawn using this function to act as the true data set. The initial
distribution D was taken to be a multivariate Gaussian distribution in d = 4 dimensions
with the 4 components being independent N (1, 0.52) random variables. The neural ODE
is solved up to T = 2 using a numerical solver (odeint) on a uniform time grid with 20
grid points. At time T = 2 the first two components of the state vector is observed as
the output. The activation function and number of nodes in the hidden layer remains
the same as in Numerical Experiment 3.2. Thus, the dimension of the parameter space
is p = 94, which is even higher than in the previous experiment. Again the initial pa-
rameters were set randomly by drawing p i.i.d. standard normal variables. The number
of simulated points at each iteration of the gradient descent was again taken to be n = 100.

In Figure 4.7 on the next page the estimated squared MMD is plotted against iter-
ation number. It can be seen from this Figure that the estimated squared MMD gets
very close to zero for quite some time but then jumps up suddenly at around the 200th
iteration. This might be due a stability issue and is not something which we will investi-

52

4.3. NUMERICAL EXPERIMENT 3: NEURAL NETS

gate in this project.

Figure 4.7: Estimated Squared MMD against iteration for noisy Make Circles target

The parameters which obtained the lowest score were then used to simulate 1000 points
from the trained generative model. These points are plotted on a scatter plot next to the
same plot for the true data. This is shown in Figure 4.8 on the next page. It can be seen
that on this run the algorithm produced parameter values which gave resulting samples
which are quite similar to the true data-set. The results are not perfect however as the
ring is a bit less thick than the true data and not as symmetrical either. However, the
results are promising and extra tuning of the bandwidth of the kernel might yield even
better results; this is something left for further research.

Remark. It should be stressed that the issue of non-reproducibility is especially a problem
for this experiment as repeated runs of the same code often gave very different samples.
For instance, often the cost would get very close to 0 and the parameters corresponding
to this minimum cost produced samples which formed a ring which was much thinner
than the one presented here. This issue should be investigated further, for instance by
increasing T to see how the ODE will continue to move the ‘mass’ or letting the gradient
descent run for longer to see whether it will converge to somewhere else (the spike in the
cost at the end might indicate that convergence has yet to occur).

53

4.3. NUMERICAL EXPERIMENT 3: NEURAL NETS

Figure 4.8: Scatter plots of the true data and the simulated data.

These experiments conclude our investigation into the use of the Adjoint Method.

54

Chapter 5

Conclusion

5.1 Summary

In the preceding chapters the use of MMD as a means of performing inference of gener-
ative statistical models based on ODEs was investigated. In Chapter 1 the focus was on
going into the relevant background theory needed for one to have a good grasp on MMD,
in particular the theory of Reproducing Kernel Hilbert Spaces was discussed with a con-
centration on the role of such spaces for MMD. Particular attention was also paid to
characteristic kernels.

In Chapter 2 the parameter estimation problem was tackled by using the squared
MMD as a cost function quantifying how close two distributions are. The aim was to
minimize this cost (in actuality an unbiased estimator of it was minimized) in order to
infer the true parameter vector. Two algorithms were presented in order to solve this
optimization problem. This chapter focused especially on explaining how the Jacobian
∇θGθ, needed in both algorithms, can be computed.

In Chapter 3 a detailed derivation of the Adjoint Method for time-dependent prob-
lems was presented. This method was then adapted for the parameter estimation problems
dealt with in this project.

In Chapter 4 numerical experiments were presented to demonstrate the algorithms
discussed in the preceding chapters. A numerical experiment on the Schnakenberg model
was first presented to demonstrate Algorithms 1 and 2 from Chapter 2. Algorithm 2
performed better, albeit being more computationally expensive. Both Algorithms however
were seen to become infeasible in terms of computational cost as the dimension of the
parameter space increases, and this lead us to consider the use of the Adjoint Method.
Two more numerical experiments were then presented to demonstrate this method; the
first on the Schnakenberg model acted as a check that the method works, and the second
was used to demonstrate the use of the Adjoint Method for high-dimensional parameter
spaces.

5.2 Issues Faced

In this section we shall comment briefly on several of the main issues which were faced
while working on this project:

55

5.3. POTENTIAL DIRECTIONS FORWARD

1. The biggest issue faced was in tuning all of the additional parameters required by the
various algorithms. For the first numerical experiment this was especially an issue.
A lot of trial and error had to be performed in order to get the gradient descent
algorithm to converge. The key insight which helped in getting the algorithms to
work for the Schnakenberg model was to restrict the final time T to a single unit of
time: for the particular parameter vector chosen θ0 = (1, 2, 3, 4)T the trajectories
of the ODE settled into an attractive fixed point. Thus, if one waited for too long
every trajectory would, in the eyes of MMD, look similar to every other, yielding
our approach almost useless. By restricting the final time T to be T = 1 we avoided
this issue.

2. The next big issue we faced was the time the algorithms took to run. In the begin-
ning the generator was not parallelized and so the code took a lot of time to run.
Parallelisation helped massively in terms of computation time. A further time gain
was made through the use of PyTorch’s automatic differentiation facility.

3. The issue with reproducibility due to the use of PyTorch in Numerical Experiment
3.2 is another problem we had. A simple explanation for this issue is not apparent
to us and further research into this is needed.

5.3 Potential Directions Forward

In this section we shall comment briefly on potential areas where further research can be
done for this project. In particular, 2 directions appear to be most promising: performance
of kernel based methods when the dimension of the state space d is large and the use of
the Adjoint Method for natural gradient descent. These shall be briefly discussed in the
following two subsections.

5.3.1 The Curse of Dimensionality

It is well known that in high-dimensional spaces that the Gaussian kernel becomes less
effective as a similarity measure. See for instance [38]. In the numerical experiments
considered here the highest dimension for the state space was d = 40 (in Numerical
Experiment 2), and here the Gaussian kernel seemed to work well. It would be interesting
to investigate the performance of the Gaussian kernel in much higher-dimensional state
spaces and also in PDE models. The kernel might need to be modified, especially for PDE
models, where the intrinsic geometry of the solution space will become very important.
Further work will aim to address this.

5.3.2 Adjoint Method for Natural Gradient Descent

To the best of our knowledge the Adjoint Method has yet to be applied to help compute
the Riemann Metric Tensor (2.7) which is needed to perform natural gradient descent.
If this can be done this more powerful method will hopefully be able to be applied to
problems with high-dimensional parameter spaces. This is a very interesting problem to
consider and one which will be addressed in the future.

56

5.3. POTENTIAL DIRECTIONS FORWARD

5.3.3 Other potential directions

Further areas related to this topic which might prove fruitful to research include generative
models based on PDEs and on SDEs.

57

List of Notation and Abbreviations

The following list describes notation and abbreviations that are used frequently in this
work:

Gθ Generator for a generative model

G#
θ U Pushforward of the probability measure U w.r.t. the generator Gθ

RKHS Reproducing Kernel Hilbert Space

MMD Maximum Mean Discrepancy

X A non-empty set

H A Hilbert space

RX The vector space of all functions f : X → R

〈·, ·〉H Inner product in a Hilbert space H

‖ · ‖H Norm associated to inner product in a Hilbert space H

δx (Dirac) Evaluation functional in a Hilbert space of function H ⊆ RX ; also used for
the probability measure which places a unit point mass at x

φ A feature map φ : X → H

P set of all Borel probability measures on a topological space (X ,A)

IPM Integral Probability Metric

Hk A RKHS with reproducing kernel k

γk MMD associated with the RKHS Hk

Π[P] Hilbert Space Embedding of the probability measure P into an RKHS H with
reproducing kernel k

58

Appendix A

Proofs/Justifications

Proof of Proposition 1.3.2 (based on proof in [14, p. 1526]):

Proof. Suppose f is bounded. This means that there exists a constant M > 0 such that
|f(x)| ≤M ∀x ∈ X . Using Jensen’s inequality and the preservation of ordering property
of expectation, we have, for any P ∈P that,

|EX∼P[f(X)]| ≤ EX∼P |f(X)|
≤ EX∼PM
= M <∞

We thus have EX∼P[f(X)] <∞ for all P ∈P as required.

For the converse, suppose that f is not bounded. It then follows that we can find
a sequence {xn} in X such that limn→∞ f(xn) = ∞. We can then assume w.l.o.g.
(by taking a subsequence if necessary) that f(xn) > n2 for all n. It then follows
that A :=

∑∞
n=1

1
f(xn)

< ∞. We can thus define a probability measure P on X by

P = 1
A

∑∞
n=1

1
f(xn)

δxn . We then have,

EX∼P[f(X)] =

∫
X
f(x)dP(x)

=
1

A

∞∑
n=1

f(xn)

f(xn)
=∞

This shows that if f is not bounded we can find a measure P ∈P such that EX∼P[f(X)] =
∞ as required. �

Justification of final equality in (2.3)

As mentioned in footnote 5 of Chapter 1 the reproducing kernel k is symmetric, i.e.
k(x, y) = k(y, x) ∀x, y ∈ X . Differentiating both sides of this equation w.r.t xi (compo-
nent i of vector x) yields the following equality:

∂xik(x, y) =
∂y

∂xi

T

∇1k(y, x) +
∂x

∂xi

T

∇2k(y, x)

∂xik(x, y) = ∂yik(y, x)

=⇒ ∇1k(x, y) = ∇2k(y, x)

59

Using this equality in the first integral in the line preceding (2.3) yields the following:∫
U

∫
U

(
∇θGθ(u)T∇1k(Gθ(u), Gθ(v)) +∇θGθ(v)T∇2k(Gθ(u), Gθ(v))

)
U(du)U(dv) =

=

∫
U

∫
U

(
∇θGθ(u)T∇1k(Gθ(u), Gθ(v)) +∇θGθ(v)T∇1k(Gθ(v), Gθ(u))

)
U(du)U(dv)

Focusing on the second term in this integral we can write:∫
U

∫
U
∇θGθ(v)T∇1k(Gθ(v), Gθ(u))U(du)U(dv) =

∫
U

∫
U
∇θGθ(v)T∇1k(Gθ(v), Gθ(u))U(dv)U(du)

=

∫
U

∫
U
∇θGθ(u)T∇1k(Gθ(u), Gθ(v))U(du)U(dv)

where in the first equality we used Fubini’s Theorem1 to interchange the order of inte-
gration and in the second equality we relabeled the dummy integration variables. This
change yields the result (2.3) as required.

1We are assuming here that ∇θGθ is L1 integrable and that the kernel is bounded, and these assump-
tions justify the use of Fubini’s Theorem.

60

Appendix B

Miscellaneous

Pseudo-code for ADAM

We now include pseudo-code for the ADAM optimizer taken from [19, p. 2]:

Algorithm 4: ADAM optimizer. Notes: g2
t denotes the element-wise square here,

all operations on vectors are element-wise and βt1, β
t
2 denote β1, β2 to the power t.

Input: Stepsize: α, Exponential decay rates for the moment estimates:
β1, β2 ∈ [0, 1), Stochastic objective function with parameters θ: f(θ),
Initial parameter vector: θ0

Output: Resulting parameters θt
1 m0 ← 0 (Initialize 1st moment vector);
2 v0 ← 0 (Initialize 2nd moment vector);
3 t← 0 (Initialize time step);
4 while θt not converged do
5 t← t+ 1;
6 gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t);
7 mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate);
8 vt ← β2 · vt−1 + (1− β2) · g2

t (Update biased second raw moment estimate);
9 m̂t ← mt/(1− βt1) (Compute bias-corrected first moment estimate);

10 v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate);

11 θt ← θt−1 − α · m̂t/(
√
v̂t + ε) (Update parameters);

12 end

61

Bibliography

[1] Francois-Xavier Briol & Alessandro Barp & Andrew B. Duncan & Mark Girolami.
Statistical Inference for Generative Models with Maximum Mean Discrepancy. 2019.
url: https://arxiv.org/pdf/1906.05944v1.pdf.

[2] A.A. Poyton et al. “Parameter estimation in continuous-time dynamic models using
principal differential analysis”. In: Computers Chemical Engineering 30 (2006),
pp. 698–708. url: https://doi.org/10.1016/j.compchemeng.2005.11.008.

[3] M. Benson. “Parameter fitting in dynamic models”. In: Ecological Modelling 6
(1979), pp. 97–115. url: https://doi.org/10.1016/0304-3800(79)90029-2.

[4] Yonathon Bard. Nonlinear parameter estimation. eng. New York ; London: Aca-
demic Press, 1974. isbn: 0120782502.

[5] J. Varah. “A Spline Least Squares Method for Numerical Parameter Estimation in
Differential Equations”. In: SIAM Journal on Scientific and Statistical Computing
3.1 (1982), pp. 28–46. doi: 10.1137/0903003. eprint: https://doi.org/10.1137/
0903003. url: https://doi.org/10.1137/0903003.

[6] Hua Liang and Hulin Wu. “Parameter estimation for differential equation models
using a framework of measurement error in regression models”. In: Journal of the
American Statistical Association 103.484 (2008), pp. 1570–1583.

[7] Sophie Donnet and Adeline Samson. “Estimation of parameters in incomplete data
models defined by dynamical systems”. In: Journal of Statistical Planning and In-
ference 137.9 (2007), pp. 2815–2831.

[8] Sophie Donnet and Adeline Samson. “Parametric inference for mixed models de-
fined by stochastic differential equations”. In: ESAIM: Probability and Statistics 12
(2008), pp. 196–218.

[9] Bo Wang and Wayne Enright. “Parameter estimation for odes using a cross-entropy
approach”. In: SIAM Journal on Scientific Computing 35.6 (2013), A2718–A2737.

[10] M Peifer and J Timmer. “Parameter estimation in ordinary differential equations
for biochemical processes using the method of multiple shooting”. In: IET Systems
Biology 1.2 (2007), pp. 78–88.

[11] Ben Calderhead, Mark Girolami, and Neil D Lawrence. “Accelerating Bayesian in-
ference over nonlinear differential equations with Gaussian processes”. In: Advances
in neural information processing systems. 2009, pp. 217–224.

[12] Markus Heinonen et al. “Learning unknown ODE models with Gaussian processes”.
In: arXiv preprint arXiv:1803.04303 (2018).

[13] Dino Sejdinovic & Arthur Gretton. What is an RKHS? 2014. url: http://www.
stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_2014.pdf.

62

https://arxiv.org/pdf/1906.05944v1.pdf
https://doi.org/10.1016/j.compchemeng.2005.11.008
https://doi.org/10.1016/0304-3800(79)90029-2
https://doi.org/10.1137/0903003
https://doi.org/10.1137/0903003
https://doi.org/10.1137/0903003
https://doi.org/10.1137/0903003
http://www.stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_2014.pdf
http://www.stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_2014.pdf

BIBLIOGRAPHY

[14] Bharath K. Sriperumbudur et al. Hilbert Space Embeddings and Metrics on Probabil-
ity Measures. 2010. url: http://www.jmlr.org/papers/volume11/sriperumbudur10a/
sriperumbudur10a.pdf.

[15] Krikamol Muandet et al. Kernel Mean Embedding of Distributions: A Review and
Beyond. Tech. rep. 2017. arXiv: 1605.09522v3. url: https://arxiv.org/pdf/
1605.09522.pdf.

[16] Ingo Steinwart. On the Influence of the Kernel on the Consistency of Support Vector
Machines. 2001. url: http://www.jmlr.org/papers/volume2/steinwart01a/
steinwart01a.pdf.

[17] Kenji Fukumizu et al. “Kernel Measures of Conditional Dependence”. In: Advances
in Neural Information Processing Systems 20. Ed. by J. C. Platt et al. Curran
Associates, Inc., 2008, pp. 489–496. url: http://papers.nips.cc/paper/3340-
kernel-measures-of-conditional-dependence.pdf.

[18] Kenji Fukumizu, Francis R. Bach, and Michael I. Jordan. “Kernel dimension re-
duction in regression”. In: Ann. Statist. 37.4 (Aug. 2009), pp. 1871–1905. doi:
10.1214/08-AOS637. url: https://doi.org/10.1214/08-AOS637.

[19] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[20] Ning Qian. “On the momentum term in gradient descent learning algorithms”. In:
Neural networks 12.1 (1999), pp. 145–151.

[21] Shun-Ichi Amari and Scott C Douglas. “Why natural gradient?” In: Proceedings of
the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP’98 (Cat. No. 98CH36181). Vol. 2. IEEE. 1998, pp. 1213–1216.

[22] Shun-Ichi Amari. “Natural gradient works efficiently in learning”. In: Neural com-
putation 10.2 (1998), pp. 251–276.

[23] Jorge R Leis and Mark A Kramer. “The simultaneous solution and sensitivity anal-
ysis of systems described by ordinary differential equations”. In: ACM Transactions
on Mathematical Software (TOMS) 14.1 (1988), pp. 45–60.

[24] url: http://stillbreeze.github.io/REINFORCE-vs-Reparameterization-
trick/.

[25] url: http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-
day-4-reparameterisation-tricks/.

[26] Robert P Dickinson and Robert J Gelinas. “Sensitivity analysis of ordinary differen-
tial equation systems—a direct method”. In: Journal of computational physics 21.2
(1976), pp. 123–143.

[27] Hiroshi Kunita. Stochastic flows and stochastic differential equations. Vol. 24. Cam-
bridge university press, 1997.

[28] Andrew M Bradley. “Pde-constrained optimization and the adjoint method”. In:
(2010).

[29] J Schnakenberg. “Simple chemical reaction systems with limit cycle behaviour”. In:
Journal of theoretical biology 81.3 (1979), pp. 389–400.

[30] url: https://joblib.readthedocs.io/en/latest/.

[31] url: https://pytorch.org/.

63

http://www.jmlr.org/papers/volume11/sriperumbudur10a/sriperumbudur10a.pdf
http://www.jmlr.org/papers/volume11/sriperumbudur10a/sriperumbudur10a.pdf
http://arxiv.org/abs/1605.09522v3
https://arxiv.org/pdf/1605.09522.pdf
https://arxiv.org/pdf/1605.09522.pdf
http://www.jmlr.org/papers/volume2/steinwart01a/steinwart01a.pdf
http://www.jmlr.org/papers/volume2/steinwart01a/steinwart01a.pdf
http://papers.nips.cc/paper/3340-kernel-measures-of-conditional-dependence.pdf
http://papers.nips.cc/paper/3340-kernel-measures-of-conditional-dependence.pdf
https://doi.org/10.1214/08-AOS637
https://doi.org/10.1214/08-AOS637
http://stillbreeze.github.io/REINFORCE-vs-Reparameterization-trick/
http://stillbreeze.github.io/REINFORCE-vs-Reparameterization-trick/
http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/
http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/
https://joblib.readthedocs.io/en/latest/
https://pytorch.org/

BIBLIOGRAPHY

[32] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: (2017).

[33] url: https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.
html#sphx-glr-beginner-blitz-autograd-tutorial-py.

[34] Tian Qi Chen et al. “Neural ordinary differential equations”. In: Advances in neural
information processing systems. 2018, pp. 6571–6583.

[35] Balázs Csanád Csáji. “Approximation with artificial neural networks”. In: Faculty
of Sciences, Etvs Lornd University, Hungary 24 (2001), p. 48.

[36] url: https://pytorch.org/docs/stable/notes/randomness.html.

[37] url: https : / / scikit - learn . org / stable / modules / generated / sklearn .

datasets.make_circles.html.

[38] Damien Francois, Vincent Wertz, Michel Verleysen, et al. “About the locality of ker-
nels in high-dimensional spaces”. In: International Symposium on Applied Stochastic
Models and Data Analysis. Citeseer. 2005, pp. 238–245.

64

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py
https://pytorch.org/docs/stable/notes/randomness.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html

	Introduction
	Motivation
	Brief Overview of Common Methods for Inference in Dynamical Systems
	Background Theory
	Reproducing Kernel Hilbert Spaces
	Maximum Mean Discrepancy
	Characteristic Kernels

	Parameter Estimation for ODEs using MMD
	Minimum MMD estimators
	Computing the Jacobian bold0mu mumu 2005/06/28 ver: 1.3 subfig packageGbold0mu mumu 2005/06/28 ver: 1.3 subfig package

	Reverse Differentiation of ODEs
	Derivation of the Adjoint Method
	Adjoint Method for Time-dependent Problems
	A Simple Worked Example
	Application of the Adjoint Method to Computing the MMD gradient
	Computational Cost of the Adjoint Method

	Numerical Experiments
	Numerical Experiment 1: The Schnakenberg Model
	Problem Setup
	Some Comments on the Implementation
	Results

	Numerical Experiment 2: The Schnakenberg Model
	Some Comments on the Implementation
	Results

	Numerical Experiment 3: Neural Nets
	Problem Setup
	Some Comments on the Implementation
	Numerical Experiment 3.1: Gaussian Mixture
	Numerical Experiment 3.2: The Make Circles Dataset

	Conclusion
	Summary
	Issues Faced
	Potential Directions Forward
	The Curse of Dimensionality
	Adjoint Method for Natural Gradient Descent
	Other potential directions

	List of Notation and Abbreviations
	Proofs/Justifications
	Miscellaneous

