{ "cells": [ { "cell_type": "markdown", "id": "96d38bf4-221b-480a-848b-d4ee15b34070", "metadata": {}, "source": [ "# Building up tools to analyse a 2-D problem" ] }, { "cell_type": "markdown", "id": "15549864-62f9-4b92-ac98-e2645dfe2273", "metadata": {}, "source": [ "> Code for a 2-D problem." ] }, { "cell_type": "code", "execution_count": 1, "id": "32cc5716-a252-467d-907f-0fea8a97b7e0", "metadata": {}, "outputs": [], "source": [ "from dolfin import *\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import matplotlib.cm as cm\n", "import matplotlib.colors as colors\n", "import matplotlib.colorbar as colorbar\n", "import matplotlib.tri as tri\n", "plt.rcParams['figure.figsize'] = (10,6)\n", "import sympy; sympy.init_printing()\n", "# code for displaying matrices nicely\n", "def display_matrix(m):\n", " display(sympy.Matrix(m))" ] }, { "cell_type": "markdown", "id": "52998acf-499d-4f22-8282-c3938709fcfc", "metadata": {}, "source": [ "## 2 dimensional case (PDE)\n", "\n", "We consider the following 2-D problem:\n", "\n", "$$\\nabla\\cdot\\left(\\kappa(x)\\nabla u(x)\\right)=f(x) \\quad\\forall x\\in D=[0,1]^{2}$$\n", "\n", "$$u(x)=0\\quad\\forall x\\in\\partial D$$\n", "\n", "where here $f$ is again a random forcing term, assumed to be a GP in this work." ] }, { "cell_type": "markdown", "id": "bdbf1fc6-1887-49d3-941e-1b05cd3ea95d", "metadata": { "tags": [] }, "source": [ "### Variational formulation\n", "\n", "The variational formulation is given by:\n", "\n", "$$a(u,v)=L(v)$$\n", "\n", "where:\n", "\n", "$$a(u,v)=\\int_{D}\\nabla u\\cdot\\left(\\kappa\\nabla u\\right)dx$$\n", "\n", "and\n", "\n", "$$L(v)=\\int_{D}fvdx$$" ] }, { "cell_type": "markdown", "id": "c82313d9-47b6-4f25-a5cc-b88c1b36e2cf", "metadata": {}, "source": [ "We will make the following choices for $\\kappa,f$:\n", "\n", "$$\\kappa(x)=1$$\n", "\n", "$$f\\sim\\mathcal{G}\\mathcal{P}(\\bar{f},k_{f})$$\n", "\n", "$$\\bar{f}(x)=1$$\n", "\n", "$$ k_{f}(x,y) = \\sigma_f^{2}\\exp\\left(-\\frac{\\|x-y\\|^2}{2l_f^2}\\right)$$\n", "\n", "$$ \\sigma_{f} = 0.1$$\n", "\n", "$$ l_f = 0.4 $$\n", "\n", "where $\\|\\cdot\\|$ is the usual Euclidean norm." ] }, { "cell_type": "markdown", "id": "a4659450-d579-49e8-a1d8-7eb42e01d39b", "metadata": {}, "source": [ "Since we do not have access to a suitable Green's function for this problem, we will have to estimate the rate of convergence of the statFEM prior and posterior by comparing them on a sequence of refined meshes. More details on this will follow later. Thus, we need similar code as for the 1-D problem." ] }, { "cell_type": "markdown", "id": "39f5bd38-7a22-4167-8cdc-7232e142730d", "metadata": {}, "source": [ "### statFEM prior mean\n", "\n", "We will again utilise FEniCS to obtain the statFEM prior mean. For this purpose, we create a function [mean_assembler()](statFEM_analysis.rst#statFEM_analysis.twoDim.mean_assembler) which will assemble the mean for the statFEM prior." ] }, { "cell_type": "code", "execution_count": 2, "id": "310df957-b312-41d3-a908-4a260257e61a", "metadata": {}, "outputs": [], "source": [ "from statFEM_analysis.twoDim import mean_assembler" ] }, { "cell_type": "markdown", "id": "4a3330e1-8a52-4273-a7a5-d05aeb892f8b", "metadata": {}, "source": [ "`mean_assembler` takes in the mesh size `h` and the mean function `f_bar` for the forcing and computes the mean of the approximate statFEM prior, returning this as a FEniCS function." ] }, { "cell_type": "markdown", "id": "e5d34a07-91fe-40b4-b0b6-d6114146dbce", "metadata": {}, "source": [ "
oneDim
, we can assemble such covariance matrices in a very efficient manner. The code remains largely the same as in the 1-D case and so we do not go into as much detail here."
]
},
{
"cell_type": "markdown",
"id": "51472abe-33d1-4238-b509-bfa70fadf4d4",
"metadata": {},
"source": [
"We start by creating a function [kernMat()](statFEM_analysis.rst#statFEM_analysis.twoDim.kernMat) which assembles the covariance matrix corresponding to a covariance function `k` on a grid `grid`."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6faf8e07-8e5e-4551-a7a8-634f5b397ffc",
"metadata": {},
"outputs": [],
"source": [
"from statFEM_analysis.twoDim import kernMat"
]
},
{
"cell_type": "markdown",
"id": "c5c7bc08-bdb6-41d7-9f57-8eb6a67ef56b",
"metadata": {},
"source": [
"