1-D max prior example (Matern-1/2 covariance)
The script to obtain the prior results for the maximum example in our paper 1 (see Section 4.4) can be found below:
from dolfin import *
set_log_level(LogLevel.ERROR)
import numpy as np
import numba
import ot
import time
import pickle
# import required functions from oneDim
from statFEM_analysis.oneDim import mean_assembler, kernMat, cov_assembler, sample_gp
from scipy import integrate
from scipy.linalg import sqrtm
from tqdm import tqdm
from statFEM_analysis.maxDist import wass
# set up true mean
@numba.jit
def m_u(x):
return 0.5*x*(1-x)
# set up mean and kernel functions
σ_f = 0.1
κ = 4
# @numba.jit
# def m_f(x):
# return 1.0
@numba.jit
def c_f(x,y):
return (σ_f**2)*np.exp(-κ*np.abs(x-y))
@numba.jit
def k_f(x):
return (σ_f**2)*np.exp(-κ*np.abs(x))
# set up true cov function for solution
# compute inner integral over t
def η(w,y):
I_1 = integrate.quad(lambda t: t*c_f(w,t),0.0,y)[0]
I_2 = integrate.quad(lambda t: (1-t)*c_f(w,t),y,1.0)[0]
return (1-y)*I_1 + y*I_2
# use this function eta and compute the outer integral over w
def c_u(x,y):
I_1 = integrate.quad(lambda w: (1-w)*η(w,y),x,1.0)[0]
I_2 = integrate.quad(lambda w: w*η(w,y),0.0,x)[0]
return x*I_1 + (1-x)*I_2
print("Starting to simulate trajectories from true prior.")
start = time.time()
n_sim = 1000
grid = np.linspace(0,1,100)
np.random.seed(235)
u_sim = sample_gp(n_sim, m_u, c_u, grid, par = False, trans = False, tol = 1e-8)
end = time.time()
print(f"Finished simulation, time elapsed: {end - start}")
max_true = u_sim.max(axis=0)
# create statFEM sampler function
def statFEM_sampler(n_sim, grid, h, f_bar, k_f, par = False, trans = True, tol=1e-9):
# get length of grid
d = len(grid)
# get size of FE mesh
J = int(np.round(1/h))
# get statFEM mean function
μ_func = mean_assembler(h, f_bar)
# evaluate this on the grid
μ = np.array([μ_func(x) for x in grid]).reshape(d,1)
# get statFEM cov mat on grid
Σ = cov_assembler(J, k_f, grid, parallel=par, translation_inv=trans)
# construct the cholesky decomposition Σ = GG^T
# we add a small diagonal perturbation to Σ to ensure it
# strictly positive definite
G = np.linalg.cholesky(Σ + tol * np.eye(d))
# draw iid standard normal random vectors
Z = np.random.normal(size=(d,n_sim))
# construct samples from GP(m,k)
Y = G@Z + np.tile(μ,n_sim)
# return the sampled trajectories
return Y
f_bar = Constant(1.0)
# set up range of h values to use
h_range_tmp = np.linspace(0.25,0.02,100)
h_range = 1/np.unique(np.round(1/h_range_tmp))
np.round(h_range,2)
start = time.time()
errors = []
###################
n_bins = 100
##################
np.random.seed(3252)
for h in tqdm(h_range):
# sample trajectories from statFEM prior for current h value
sim = statFEM_sampler(n_sim,grid,h,f_bar,k_f)
# get max
max_sim = sim.max(axis=0)
# compute error
error = wass(max_true,max_sim,n_bins)
# append to errors
errors.append(error)
end = time.time()
print(f"time elapsed: {end - start}")
results = {'h_range': h_range, 'errors': errors, 'u_sim': u_sim, 'max_true': max_true}
with open('results/oneDim_prior_max_matern_results', 'wb') as f:
pickle.dump(results, f)
- 1
Yanni Papandreou, Jon Cockayne, Mark Girolami, and Andrew B Duncan. Theoretical guarantees for the statistical finite element method. arXiv preprint arXiv:2111.07691, 2021. URL: https://arxiv.org/abs/2111.07691.